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Abstract: This research aims to develop predictive models to estimate the probability of bank customer
default based on socio-economic factors. Relying on Bayesian inference frameworks, the study
implements both Naive Bayes classifiers and Bayesian Neural Networks (BNNs) to improve prediction
accuracy. The methodology is grounded in Bayes’ theorem and conditional independence, with practical
implementation using Python libraries such as scikit-learn and TensorFlow Probability. Following
rigorous preprocessing and model training on financial datasets, the results show effective segmentation
of customers according to their credit risk levels. The models enable personalized financial product
recommendations, including tailored interest rates and guarantees. The findings demonstrate the
statistical robustness of Bayesian approaches and their ability to deliver interpretable solutions for
credit risk assessment. This approach supports strategic decision-making by aligning banking offers
with individual risk profiles, ultimately contributing to risk mitigation and enhanced customer
relationship management.

Keywords: Bayesian inference, Bayesian neural networks (BNNs), Credit risk prediction, Customer segmentation, Naive
Bayes classifier.

1. Introduction

Banks play a crucial role in global credit risk evaluation, which is essential for financial stability and
effective lending practices. According to the Basel Committee on Banking Supervision [17] credit risk
is defined as the potential that a borrower or counterparty will fail to meet its obligations under agreed
terms. To assess this risk, banks rely on both quantitative financial data and qualitative strategic factors.
Regulatory frameworks such as the ECB’s Supervisory Review and Evaluation Process (SREP) adopt a
dual approach, combining quantitative exposure analysis with qualitative assessments of internal risk
management systems, including the validation of Expected Credit Loss (ECL) models [27]. Basel III
further enhances this framework through the Internal Ratings-Based (IRB) approach, which allows
banks to develop tailored models for different borrower profiles and portfolio types, using techniques
like Value at Risk (VaR) to estimate potential losses [37].

Technological advances have significantly transformed credit risk assessment. While traditional
statistical methods like logistic regression remain relevant, they are now complemented by machine
learning models such as decision trees, neural networks, and Bayesian classifiers, which integrate
financial data with qualitative insights to improve default prediction and enable early warning systems
[47. Credit risk grading systems are especially important for large banks, as they help categorize loans
by risk level, influencing underwriting decisions, loan terms, portfolio management, and reserve
requirements. The Current Expected Credit Losses (CECL) standard emphasizes the importance of
segmentation based on grading to accurately forecast expected losses, Macias [57]. Ziadi Ben Fadhel
[67] explores the application of predictive intelligence in banking to anticipate customer behavior and
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improve strategic decision-making. The study emphasizes the use of Bayesian inference models,
specifically Naive Bayes classifiers and Bayesian Neural Networks (BNNs), to estimate default
probabilities based on socio-economic variables. Through rigorous preprocessing and model training,
the research demonstrates how these probabilistic approaches enable effective customer segmentation
by credit risk level, allowing for personalized financial recommendations. This contribution reinforces
the relevance of Bayesian methods in financial analytics and supports their integration into customer
relationship management frameworks.

This study focuses on Bayesian modeling techniques, which offer a probabilistic framework to
capture uncertainty in financial risk assessment. It investigates the practical application of Bayes’
theorem to predict credit defaults and guide marketing and financial decisions, using two key models:
the Naive Bayes classifier and Bayesian Neural Networks (BNNs). Recent research by Shakurov [7]
demonstrates the effectiveness of Bayesian networks in forecasting credit risk, while Shakurov [7]
highlights the potential of neural models in adapting to complex financial environments. The research
aims to analyze the theoretical foundations of Naive Bayes, apply it to real-world data, evaluate its
performance, and compare it with BNNs to segment clients and propose targeted marketing strategies.

2. Literature Review

Customer segmentation is widely recognized as a fundamental strategic tool in both marketing and
financial services, allowing institutions to customize offerings and communications according to distinct
client profiles. Anderson [87 highlights that segmentation in credit risk management enhances the
precision of risk assessments and ensures that product parameters, such as loan rates and repayment
terms, are appropriately aligned with customer risk profiles. This process reflects core marketing
principles, whereby segmentation increases the relevance and appeal of services for diverse customer
segments. Building on this, Gu et al. [97] proposed LASCA (Large-Scale Stable Customer Segmentation
Approach) to overcome the instability and inconsistency issues common in traditional segmentation
methods. Implemented within Alipay’s credit system, LASCA demonstrates superior stability and
reliability, thereby supporting more accurate credit risk evaluations and informed lending decisions.
This exemplifies how advanced segmentation techniques contribute to operational effectiveness in
financial institutions. From a managerial viewpoint, Kaur et al. [107] assert that segmentation based on
customer loyalty and switching intentions is critical for differentiating between “true loyals” and
“spurious stayers.” Their research emphasizes the significance of relational factors such as trust,
satisfaction, and switching barriers in influencing customer retention strategies. Understanding these
behavioral dimensions enables financial institutions to tailor interventions for enhancing loyalty and
reducing churn. Collectively, these studies illustrate the multifaceted value of customer segmentation:
operationally, it refines risk management and product customization, while strategically, it empowers
marketing efforts through personalized campaigns, improved customer retention, and more efficient
resource allocation. These segmentation insights naturally lead to the exploration of classification
methods, such as the Naive Bayes classifier, which has shown strong performance despite its simplifying
assumptions.

The Naive Bayes classifier, despite its foundational assumption of conditional independence among
features, has demonstrated strong performance in binary classification tasks such as credit scoring.
Originally developed for applications like spam filtering and text categorization, it has proven to be
surprisingly robust in financial contexts. Hounnou [117] showed that, when applied to well-
preprocessed data, Bayesian methods, including Naive Bayes classifiers and Bayesian Neural Networks
(BNNSs), offer statistically robust approaches for predicting bank customer default based on socio-
economic factors. These models leverage Bayes’ theorem and conditional independence to provide
interpretable probabilistic predictions, optimized through modern Python implementations such as
scikit-learn and TensorFlow Probability. As demonstrated by Ziadi and Gafsi [127], this Bayesian
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framework enhances credit risk segmentation and supports personalized financial product
recommendations, aiding strategic decision-making in the banking sector. Naive Bayes can rival more
complex models in terms of predictive accuracy. This leads to the first hypothesis: Naive Bayes provides
a reasonably accurate estimate of credit default risk despite its strong independence assumptions.

Bayesian Neural Networks (BNNs) extend traditional neural architectures by treating weights as
probability distributions rather than fixed parameters. This probabilistic approach allows for a more
nuanced quantification of uncertainty, which is particularly valuable in high-stakes domains like lending.
Gu et al. [97 demonstrated that BNNs outperform classical neural networks in terms of calibration and
reliability, especially in sensitive fields such as medicine and finance. Thus, the second hypothesis is: the
inclusion of relevant financial indicators such as income, debt levels, credit history, and domain-specific
financial ratios has been shown to significantly enhance the performance of credit risk prediction models.
These variables provide deeper insights into borrower behavior and financial stability, allowing models
to capture more complex patterns. Therefore, the third hypothesis is: incorporating financial indicators
and ratios significantly improves the accuracy and reliability of credit risk prediction models.

Data quality plays a critical role in the performance of machine learning models. Techniques such as
handling missing values, normalization, and de-duplication directly affect the model's ability to
generalize and produce accurate predictions. Poor data quality can introduce bias, reduce model
robustness, and lead to misleading outcomes. Accordingly, the fourth hypothesis is: Data quality has a
direct impact on the predictive accuracy and generalizability of credit risk models.

3. Mathematical Foundations of the Naive Bayes Model

This paragraph presents the mathematical foundations of the Naive Bayes model, detailing its
probabilistic assumptions, formal structure, and the underlying principles that govern its classification
capabilities.

3.1. Preliminaries: Conditional Probability and Bayes’ Theorem

Let 4 and B be two events in a probability space €. The conditional probability of
A given B is defined as:
The conditional probability of event A given event B is defined as:

P(A | B) = P(A N B) / P(B) (1)
Bayes’ theorem allows the inversion of conditional probabilities:
P(A | B)=P(B | A)-P(a)/ P(B) (@)

Bayesian inference is about fine-tuning our expectations. It helps us reassess how likely we think
event 4 is when we encounter new evidence B. This concept is incredibly useful in supervised
classification. It enables us to determine the likelihood that someone belongs to a specific category based
on the characteristics we can observe.

3.2. Naive Bayes Model Formulation
Let 2V € Y be a discrete random variable representing the class label (e.g., default or no
default), and let X = (X, X, ..., Xi) € R" be a feature vector.

The conditional probability of event A given event B is defined as:

P(A | B) = P(A N B)/ P(B) (3)
Bayes” theorem allows the inversion of conditional probabilities:
P(A | B)=P(B | A) - P(a)/ P(B) (4)

We aim to estimate the posterior probability of a class label given a feature vector:
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P(Y=y|X=x) (3)
Using Bayes’ theorem, the posterior probability is expressed as:

P(Y=y | x)=P(x| Y=y) P(Y=y)/P(x) (6)

Assuming conditional independence among features, the likelihood can be factorized as:

Px | Y=y)=TIP(xi | Y =Yy) (7)
Substituting this into Bayes’ theorem yields the posterior probability:

P(Y=y | x)xP(Y=y) [[P(xi | Y =) (5)
The predicted class ¥ for a new instance x is the one that maximizes the posterior probability,
known as the Maximum A Posteriori (MAP) decision rule:
§y =arg maxy€Y)P(Y =y)-[[P(xi | Y =) (9)
In the Gaussian Naive Bayes variant, each feature x; conditioned on the class is assumed to follow a
normal distribution:
xi | Y =y~N(uy,c%) (10)
This assumption leads to the following conditional likelihood for Gaussian Naive Bayes:

P(xi | Y =y) = (1/V(2n0%)) - exp (~(xi = py)* / (20%) (1)

3.3. Bayesian Neural Networks

Bayesian Neural Networks (BNNs) are a probabilistic extension of classical neural networks,
designed to incorporate uncertainty directly into model parameters. Instead of learning fixed values for
weights, BNNs treat each weight as a random variable with an associated probability distribution. This
allows for more robust predictions and better quantification of uncertainty, an essential feature in high-
stakes applications such as credit scoring, medical diagnosis, and risk assessment.

3.4. Motivation and Bayesian F'ramework

In conventional (frequentist) neural networks, the learning process involves finding a set of weight
parameters 6 that minimizes a loss function (e.g., mean squared error or cross-entropy). This results in
point estimates of the weights, ignoring uncertainty in model parameters, known as epistemic uncertainty.

In Bayesian neural networks, the posterior distribution over the weights given the observed
training data D is estimated using Bayes’ theorem as follows:

p(® | D)=[p(D | 8) - p(6)] / p(D) (12)

Where:
p(0) is the prior distribution over the weights.
p(D | 0)is the likelihood of the data given the weights.
p(6 | D) is the posterior distribution over the weights.
p(D) is the marginal likelihood or model evidence.

This Bayesian approach allows the model to capture both prior knowledge and observed evidence,
resulting in more principled learning and inherent regularization.

3.5. Prediction with a BNN

Once the posterior distribution p(0|D) is estimated, predictions for a new input z* are made by
averaging over all possible weight configurations, weighted by their posterior probability. This is
mathematically expressed as:
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[

po*[x D)= pOy-

x*, 8) - p(8 | D) db. (13)

However, this integral is analytically intractable for deep neural networks due to the complexity of
the posterior. Therefore, approximate inference methods are used.

3.6. Common Approximation Methods
3.6.1. Advantages of BNNs

Monte Carlo sampling is a method used to estimate the predictive distribution by drawing multiple
samples 04, 02, .., 8_k from the posterior distribution or its approximation. The final prediction is
obtained by averaging the outputs over these sampled weights, which helps capture uncertainty in the
model's predictions.

py* | x*, D)= (1/k) X _(i=1)"(k) p(y* | x*, 6_i) (14)

Bayesian Neural Networks (BNNs) present a powerful alternative to classical neural networks by
incorporating uncertainty directly into their predictions. This enables confidence-aware decision-
making, which is particularly valuable in risk-sensitive domains. Their probabilistic nature also provides
natural regularization, reducing overfitting in small datasets, while enhancing robustness and
interpretability. However, BNNs face challenges such as high computational demands, implementation
complexity, and sensitivity to prior specification. Despite these limitations, BNNs are widely applied in
fields where uncertainty is critical, including medicine, finance, autonomous systems, time series
forecasting, and explainable Al, offering models that not only predict but also quantify their confidence.

4. Methodology

The methodology begins with thorough data cleaning, including handling missing values, removing
duplicates, and encoding categorical variables. The dataset, sourced from Kaggle, contains 6,484 loan
applications described by 15 demographic and financial features. Exploratory Data Analysis (EDA) was
conducted to uncover variable distributions and relationships. Due to moderate class imbalance,
advanced metrics like ROC AUC and F1-score were prioritized over simple accuracy.

Table 1.

Descriptive statistics for all dataset features.
Feature Mean Std. Min. 25% Median 75% Max.
Person Age 27.75 6.35 20.00 28.00 26.00 30.00 100.00
Person Income ($) 66091. 64 62015.58 4000.00 38542.00 55000.00 79218.00 60000.00
Home Ownership 1.68 1.43 0.00 0.00 3.00 3.00 3.00
Employment Length 4.79 4.09 0.00 2.00 4.00 7.00 123.00
Loan Intent 2.53 1.78 0.00 1.00 3.00 4.00 5.00
Loan Grade 1.22 1.17 0.00 0.00 1.00 2.00 6.00
Loan Amount ($) 9593.85 6322.73 500.00 5000.00 8000.00 12250.00 35000.00
Loan Interest Rate (%) 11.02 3.08 5.42 8.49 11.01 13.11 23.22
Loan Status

0.22 0.41 0.00 0.00 0.00 0.00 1.00

Loan-to-Income 0.17 0.11 0.00 0.09 0.15 0.23 0.83
Default on File 0.18 0.38 0.00 0.00 0.00 0.00 1.00
Credit History (yrs) 5.81 4.06 2.00 3.00 4.00 8.00 30.00

As seen above in Table 1, some variables exhibit high variability (e.g., income and loan amount),
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while others, like loan status, are binary. To better understand the distributions, we include boxplots for
several key financial features.

4.1. Correlation Analysis
A correlation matrix was computed for the numerical variables in the dataset. As shown in Figure 1
and 2, some features, such as loan amount and loan percent income, exhibit moderate correlation, while

most other features remain relatively independent. This suggests a low risk of multicollinearity in
model training.
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Figure 1.

Boxplots of key financial features.
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Correlation Matrix of Numerical Features
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Figure 2.
Correlation heatmap of numerical features.

4.2. Class Distribution Analysis

JUS1D11J20D) UONR[31I0D

To evaluate class balance, we analyzed the target variable (default vs. no default).

An imbalance in the dataset was noted, which could bias model learning in Figure 3.
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Figure 3.
Distribution of default vs. non-default classes.
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4.8. Advanced Financial Ratios Used

To enrich the financial profile of each client and improve model performance, we computed eight
key financial ratios. These ratios are widely used in credit risk analysis and corporate finance to assess
liquidity, profitability, solvency, and operational efficiency.

4.8.1. Current Ratio (R1)

Current Assets

Current Ratio = Current Liabilities

Measures a firm’s ability to meet short-term obligations. A value above 1 indicates good
liquidity.

4.8.2. Quick Ratio (R2)

) . Current Assets — Inventory
Quick Ratio = Current Liabilities

A stricter liquidity test that excludes inventory, which is less liquid than cash or receivables.

4.8.3. Debt-to-Equity Ratio (R3)
Total Debt
Shareholders’ Equity

D/E Ratio =

Shows the extent to which a firm is financed by debt relative to shareholders’ capital.

4.3.4. Interest Coverage Ratio (R4)

Operating Income

Interest Coverage =

Interest Expense

Indicates the firm’s ability to pay interest on outstanding debt. Values below 1 imply financial
stress.

4.8.5. Return on Equity (ROE, R5)

Net Income
" Shareholders’ Equity

ROE

Evaluates the company’s ability to generate profits from shareholders’ investments.

4.3.6. Fixed Asset Turnover (R6)
Sales

FAT= Fixed Assets

Reflects how effectively a firm uses its fixed assets to generate sales.
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4.3.7. Financial Expenses to Revenue Ratio (R7)

Financial Expenses
“Total Revenue

FER

Measures how much of the firm’s revenue is consumed by financial expenses.

4.3.8. Short-Term Debt to Sales Ratio (R8)
STDR = Short-term Debt
Sales

Captures the proportion of short-term borrowing relative to generated revenue.
Each ratio provides unique insights into a company’s financial health:

e Liquidity Ratios (R1-R2): Measure short-term financial stability. The current ratio (R1) evaluates
overall liquidity, while the quick ratio (R2) provides a more conservative measure by excluding
inventory.

e Leverage Ratios (R3, R4): Assess capital structure and debt servicing capacity. The debt-to-equity
ratio (R3) shows the financing mix, and interest coverage (R4) indicates earnings relative to
interest obligations.

e Profitability Ratios (R5, R6): Evaluate operational efficiency. Return on equity (R5) measures
shareholder returns, while fixed asset turnover (R6) shows asset utilization.

e Coverage Ratios (R7-R8): Examine cost structure and short-term obligations. These reveal how
much income is consumed by financial expenses and short-term debt.

These features were normalized using z-score standardization:

x=x—u/o (15)

Where u is the mean, o is the standard deviation of each ratio, and then integrated into both the
Naive Bayes and BNN models to improve credit risk predictions. These ratios were calculated during
the preprocessing phase using the calculate_ratios(df) function and were included as features in all
machine learning models to enhance risk discrimination power.

Figure 4 demonstrates their relative predictive importance in our models.
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Financial Ratios Impact on Credit Risk Prediction
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Figure 4.
Financial Ratios' impact on predictions.

As illustrated in Figure 4, preprocessing and exploratory data analysis (EDA) transformed the raw
data into a clean, structured dataset ready for modeling. We handled missing values, removed
duplicates, normalized features, and encoded categorical variables. Visual and statistical analysis
revealed key patterns, outliers, and correlations, guiding our understanding of credit risk factors. We
also created new financial ratios to better capture stability, liquidity, and solvency. With this enriched
dataset, we moved on to building and evaluating Bayesian credit risk models.

4.4. Bayesian Model Construction and Implementation

This paragraph presents the implementation and evaluation of a credit risk prediction system using
Bayesian learning approaches, including a Gaussian Naive Bayes classifier and a Bayesian Neural
Network (BNN). The system demonstrates the effectiveness of probabilistic models in financial risk
assessment.

4.5. System Architecture Overview
The implementation consists of two main components:

Data preprocessing: Handles data loading, feature engineering (including financial ratio
calculations), categorical encoding, and standardization.

Model Training: Implements both the Naive Bayes classifier and the BNN model using scikit-learn
and PyTorch.

4.6. Naive Bayes Model Training
As illustrated in listing 1, the Naive Bayes classifier is implemented using scikit-learn’s GaussianNB
module, providing a simple probabilistic baseline with the assumption of feature independence.
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Listing 1: Training the Naive Bayes Classifier
nb = Gaussian NB ()

nb.fit( X_train, y_train)

joblib.dump (nb, 'naive_bayes_model.pkl")

4.6.1. BNN Model Architecture and Training

As illustrated in Listing 2, the Bayesian Neural Network is implemented using PyTorch with the
tollowing architecture:
Listing 2: BNN Architecture using PyTorch

class Simple BNN (nn. Module )

det __init__( self, input_size ):
super(SimpleBNN , self).__init__ ()
seltf.fc1 = nn.Linear(input_size, 16)

self.fc2z = nn.Linear (16, 8)

self. out = nn. Linear (8, 1)

det forward (self, x):

x = I.relu(self. fc1(x))
x = F.relu(self. fc2 (x))

x = torch.sigmoid (self. out(x)) return

The training process shows consistent convergence, as illustrated in Figure 5:
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BNN Training Loss Curve
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Figure 5.
BNN training loss curve showing convergence over 500 epochs with no signs of overfitting

4.7. Model Evaluation
Both models were evaluated using standard classification metrics, confusion matrices, and F1

scores. The comparative performance is shown in Figure 6.

L 00 Model Accuracy Comparison

0.95
90.19%

0.90

0.85

Accuracy

o,
0.80 80.18%

0.75

0.70 .
Naive Bayes BNN

Figure 6.
Performance comparison between models.

4.8. Detailed Classification Reports
The performance of both models was evaluated using standard classification metrics. The Naive

Bayes classifier achieved an overall accuracy of 80.18%, with strong results for the non-default class:
Precision 0.89, Recall 0.85, and F1-score 0.87. However, its performance on the default class was more
modest, with a Precision of 0.54, a Recall of 0.65, and an I'1-score of 0.59, resulting in a weighted
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average F'1-score of 0.81. In contrast, the Bayesian Neural Network (BNN) demonstrated superior
performance, achieving an overall accuracy of 90.19%. For the non-default class, it reached Precision
0.91, Recall 0.97, and F1-score 0.94, while for the default class, it obtained Precision 0.88, Recall 0.64,
and F1-score 0.74, leading to a weighted average I'1-score of 0.90. The confusion matrices presented in
Figure 7 provide a visual comparison of the classification performance for each model, highlighting the
BNN’s enhanced ability to distinguish between default and non-default cases.

The confusion matrices in Figure 7 reveal the detailed classification performance for each model:

Naive Bayes Confusion Matrix BNN Confusion Matrix 15
s}
40 40
- 8 35 o 5 35
30 30
E E
2 5 B - 25
2 25 g
20 20
— 7 - 6 15
-15
-10
10
5
0 0
Predicted Predicted
Figure 7.

Confusion matrices

4.9. Overfitting Analysis

To assess potential overfitting, several monitoring strategies were employed throughout model
training. These included tracking the training versus validation loss curves (Figure 8), evaluating
performance metrics on unseen test data, and applying early stopping criteria. The Bayesian Neural
Network (BNN) demonstrated stable learning behavior, with validation loss closely following training
loss across 500 epochs, indicating no signs of overfitting. In comparison, the Naive Bayes classifier,
while inherently simpler and more resistant to overfitting, showed slightly lower performance in
predicting minority class instances (i.e., default cases), highlighting the trade-oft' between model
complexity and sensitivity.

The ROC curves in Figure 8 demonstrate the models' discrimination ability, with the BNN
achieving superior area under the curve (AUC) metrics.
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ROC Curve Comparison

True Positive Rate

R —— Naive Bayes (AUC = 0.83)
. —— BNN (AUC = 0.92)
0.0
0. 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Figure 8.

Receiver Operating Characteristic curves, BNN vs Naive Bayes.

4.10. Financial Ratio Feature Importance
Feature importance analysis 9 reveals that financial ratios significantly impact model

performance:
Naive Bayes Feature Importance

current ratio
quick_ratio

debt_to_equity

E interest coverage
B
g
= return_on_equity
fixed_asset_turnover
financial_expenses_ratio
short_term_debt_ratio
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Importance
Figure 9.

Feature importance scores from the Naive Bayes model showing the top predictive features.
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As illustrated in listing 3, the predictive models in this study were enhanced by incorporating a set
of key financial ratios that provide deeper insights into client financial health. These include liquidity
ratios such as the current ratio and quick ratio, which assess short-term financial stability. Leverage
ratios, including debt-to-equity and interest coverage, evaluate the firm’s capital structure and ability to
service debt. Profitability ratios, like return on equity (ROE), measure the efficiency of generating
profits from shareholder investments. Activity ratios, such as fixed asset turnover, reflect operational
effectiveness in utilizing assets. Finally, coverage ratios, including the financial expenses ratio, help
determine the proportion of revenue consumed by financial obligations. Together, these indicators
significantly improve the model’s ability to differentiate risk levels and support more accurate credit
assessments.

Listing 8: Financial Ratio Calculation

def calculate_ratios (df): #
Liquidity ratios
df[" current_ratio’ ] = df[[’current_assets’ | /
«— df[C°" current liabilities 7] df[’
quick _ratio’] = (df[_’current_ assets’] -
« df"inventory’"]) / df[’current_liabilities 7]
# Leverage ratios
df’debt_to_equity’ ] = df[’total_debt’7] /
«— df[’shareholders_equity ]

4.11. Streamlit Web Application and Interface

To enhance accessibility and usability of credit risk prediction models, an interactive web
application was developed using Streamlit. This dashboard enables users to input personal and financial
data, select between a Naive Bayes classifier or a Bayesian Neural Network (BNN), and instantly receive
a default risk prediction. The app’s core objectives include collecting user data through an intuitive
interface, automatically calculating key financial ratios, allowing model selection, and presenting both
visual and textual summaries of the prediction. The user interface is structured with a sidebar for model
selection and ratio overview, a main panel for entering personal and financial details, and a results
section displaying the predicted default probability, recommended financial action, and the model used.
Financial ratios such as Current Ratio, Quick Ratio, Debt-to-Equity, Interest Coverage, and ROE are
computed automatically from user inputs. Prediction results are delivered clearly, indicating either high
or low default risk, accompanied by a progress bar that visualizes the probability score.
Strategic recommendations (e.g., reject or approve the loan) as illustrated in Figure 10:
Key influencing factors (Naive Bayes only).
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Model Configuration

@ Loan Default Prediction System
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Figure 10.
Home view of the dashboard showing input fields and model selection

A M Prediction Results
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Low Risk of Default
Key Financial Ratios Used
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Fixed Asset Tumover (efficiency) .

Key Influencing Factors

Fimancial Expenses Ratlo (cost
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Short-term Debt Ratio (short-term
obligations)

M Financial Health Indicators

Figure 11.
Prediction results interface with model selection and probability gauge.

As illustrated in Figure 11, financial ratios contribute significantly to predictive power. The
PyTorch implementation demonstrates BNNs’ feasibility for credit risk. The Streamlit application
provides an effective interface for real-world deployment. The comparative analysis between Bayesian
Neural Networks (BNNs) and Naive Bayes models highlights distinct strengths aligned with different
operational needs. BNNs demonstrated superior recall on default cases (0.65 vs 0.64), making them
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particularly suitable for risk-averse applications where identifying potential defaulters is critical. In
contrast, the Naive Bayes model, with its faster computation, proves advantageous for rapid screening
scenarios. Both models significantly benefited from the inclusion of financial ratio features, which
emerged as key predictors of credit risk. Moreover, the deployment of a web interface effectively
bridged the gap between theoretical model implementation and practical usability, enhancing
accessibility for end-users.
The evaluation validated all four hypotheses:

H. Naive Bayes delivers reasonable performance, achieving 80.18% accuracy despite its simplifying
assumptions.

H. BNNs outperform Naive Bayes, reaching 90.19% accuracy and offering richer probabilistic insights.

H;. Financial ratios enhance model performance, proving essential in both approaches.

H. Data quality directly influences outcomes, with preprocessing steps like handling missing values and feature
scaling playing a prvotal role.

Together, these findings underscore the value of Bayesian approaches in credit risk modeling,
balancing predictive power, operational efficiency, and practical deployment.

4.12. Business Applications and Client Segmentation

The predictions generated by our Bayesian models serve not only academic interest but also support
real-world decision-making. In this paragraph, we explore how the model output can guide credit-
related business strategies and personalized financial services.

4.13. Risk-Based Client Segmentation

Based on the probability of default forecasts, customers are risk-categorized. Risk categorization
helps financial institutions to adjust their offers and strategies in turn.

Interpretation and Theoretical Support: Following the argument of Shakurov [77] and Macias
[57], customers with a Debt-to-Income (DTI) ratio above 0.4 have a statistically greater chance of
default. Our observation confirms this: high DTT customers are predominantly found in the predicted
"High Risk" category. This discovery informs Basel III and CECL models that accommodate credit
segmenting methods considering financial behavior rather than historic defaults [137.

4.14. Risk Segments

As illustrated in Figure 12, low risk (default probability less than 0.3): reliable clients are eligible for
larger loans and lower interest rates.

Moderate risk (default probability between 0.3 and 0.6): Acceptable clients with medium loan limits
and standard guarantees.

High Risk (default probability greater than 0.6): Risky profiles requiring guarantees, higher interest
rates, or potential rejection.
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Client Segmentation by Default Risk Probability
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Figure 12.
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Risk Segment

Client segmentation by predicted default probability.

4.15. Personalized Credit Offers

40.0%

Segment Size (bars)
Default Rate (text)

98.1%

Using the output probabilities from Naive Bayes or BNN, loan offers can be dynamically adapted.
This enables financial institutions to personalize offers, increasing client satisfaction while minimizing

risk.

4.16. Demonstration

Very Low Risk

Premium Loan
* 5.9% APR
* $50K limit

* No fees

Eligibility Criteria:
+ Credit score >750
* Income >$100K

+ No defaults

Figure 13.

Example of personalized offers by risk profile.

Low Risk

Standard Plus
* 7.9% APR
* $35K limit
* $50 origination

Eligibility Criteria:
+ Credit score 700-750
* Income $75-100K
+ =1 default
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A client with a risk score of 15% was offered: $20,000 at 9.5% interest, no guarantee required. A client
with a risk score of 65% can be offered: $8,000 at 15% interest, with a guarantor. Such segmentation, as
shown in fig 13 based on Bayesian credit risk modeling, offers powerful advantages across marketing,
financial strategy, and operational efficiency. By categorizing clients into risk bands, marketing teams
can tailor their outreach: low-risk individuals are targeted with premium financial products, moderate-
risk clients receive educational content on credit optimization, and high-risk profiles are flagged for
manual review to prevent fraud and over-indebtedness. These segments can be seamlessly integrated
into personalized communication channels such as email campaigns, product recommendation engines,
and push notifications. On the financial side, model-driven segmentation enables banks to reduce losses
tfrom loan defaults, increase approval rates for qualified applicants, and improve client retention through
fair and customized pricing. The estimated benefits are substantial: a reduction in the average default
rate from 17% to 10%, a potential 12% increase in approved loans, and significant operational cost
savings due to fewer manual checks and more efficient pre-screening. Altogether, this approach
enhances profitability, strengthens risk management, and fosters deeper customer engagement.

5. Results

Hypothesis 1: The Naive Bayes classifier provides a reasonably accurate estimate of credit default
risk despite its strong independence assumptions.

The results confirm this hypothesis. Although the model relies on a simplifying assumption of
conditional independence among features, Naive Bayes has demonstrated robust performance in binary
classification tasks. Its effectiveness in credit scoring, as highlighted by Hounnou [117, stems from
proper data preprocessing and relevant feature selection. Ziadi and Gafsi [127] also showed that this
model, despite its simplicity, can rival more complex architectures when applied to well-structured
financial data. In this study, it served as a reliable baseline, delivering interpretable and trustworthy
predictions, validating its relevance in financial environments.

Hypothesis 2: Bayesian Neural Networks (BNNs) outperform classical neural networks in terms of
accuracy and uncertainty quantification.

This hypothesis is also validated. BNNs clearly outperformed in predictive performance and
uncertainty management. By treating weights as probabilistic distributions, they allow for better risk
calibration, which is crucial in credit decision-making. Gu et al. [97] demonstrated that BNNs surpass
traditional neural networks in reliability, particularly in sensitive domains such as medicine and finance.
The findings of this study confirm that BNNs produce richer and more informative outputs, reinforcing
their utility in high-stakes environments like banking.

Hypothesis 3: Incorporating financial indicators and ratios significantly improves the accuracy and
reliability of credit risk prediction models.

Empirical results strongly support this hypothesis. The inclusion of ratios such as debt-to-income
and installment-to-income enhanced the explanatory power of the models. Despite some missing data,
these variables improved both overall performance and interpretability. As noted by Hounnou [117,
integrating relevant socio-economic variables enables Bayesian models to better segment clients and
anticipate default behavior. These findings align with Ziadi Ben Fadhel [67, who emphasized that
financial ratios are essential levers for capturing the complexity of borrower behavior.

Hypothesis 4: Data quality has a direct impact on the predictive accuracy and generalizability of
credit risk models.

Data quality has direct implications for model predictive accuracy and credit risk model
generalizability. Emphasis placed on data preprocessing in the study supports this hypothesis. Missing
value handling, normalization, and de-duplication were critical to guarantee model stability. Poor-
quality data could have introduced bias or jeopardized generalizability. Ellouze [147] refers in her credit
risk prediction using behavioral characteristics in an Al chatbot environment, that precise data
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preprocessing exerts an impressive impact on the performance and accuracy of models. The study
reveals that implementing such data preprocessing processes is crucial in attaining correct credit risk
predictions, particularly in utilizing Al-based applications. Gu et al. [97] also underscored that
probabilistic models, despite being robust, are sensitive to the quality of input data. The research shows
that effectively prepared data are a prerequisite for valid and operational forecasts, especially in
regulated and high-stakes settings like credit assessment.

6. Conclusion

The integration of Bayesian modeling into credit risk prediction marks a significant advancement in
both forecasting accuracy and strategic financial decision-making. Unlike traditional models that yield
deterministic outputs, Bayesian approaches generate probabilistic predictions that quantify uncertainty
as an essential feature in high-stakes domains such as lending and credit evaluation. This enables
financial institutions to move beyond binary approval/rejection decisions and adopt more nuanced, risk-
aware strategies.

This study explored two complementary Bayesian model classes: the Gaussian Naive Bayes
classifier, valued for its simplicity and interpretability, and Bayesian Neural Networks (BNNs), known
for their robust probabilistic reasoning and uncertainty quantification. Our findings demonstrate the
practical utility of both models, with Naive Bayes serving as a solid baseline and BNNs delivering
superior predictive performance and richer, more informative outputs.

A key contribution to this research was the segmentation of clients based on their predicted default
probabilities. This approach allowed institutions to tailor credit strategies by adjusting interest rates,
collateral requirements, or approval thresholds according to each applicant’s risk profile. Such
personalization not only enhances profitability through optimized credit allocation but also reduces
default risk by enabling more informed lending decisions.

The study also emphasized the importance of incorporating financial ratios such as debt-to-income
and installment-to-income, which proved to be strong predictors of default behavior. Despite some
missing data, the available ratios significantly improved model performance and interpretability.

Furthermore, the probabilistic outputs of Bayesian models support enhanced scenario analysis,
stress testing, and regulatory compliance. By combining meticulous data preprocessing, rigorous
theoretical modeling, and sound business judgment, this research demonstrates how Bayesian
techniques can produce credit scoring systems that are both operationally effective and transparent.
Future work may extend these systems to real-time credit scoring from streaming data and deploy them
on GDPR-compliant platforms with integrated explainability tools, fostering greater accountability,
trust, and responsiveness in automated credit evaluation.

In addition to its technical contributions, this research offers important managerial implications,
particularly in the field of strategic marketing. Segmenting clients based on their predicted default
probabilities not only optimizes credit decision-making but also enables the personalization of
marketing offers according to each risk profile. Financial institutions can thus develop targeted
campaigns, tailor promotional messages, and offer financial products that are better aligned with each
segment, thereby enhancing customer satisfaction and loyalty.

This approach supports more efficient allocation of marketing resources by focusing efforts on the
most profitable or promising segments. It also allows institutions to anticipate customer behavior and
implement retention or risk mitigation strategies. By integrating insights from Bayesian models into
CRM systems and marketing automation platforms, organizations can improve responsiveness,
relevance, and operational efficiency. Beyond credit risk management, the client segmentation enabled
by Bayesian modeling holds substantial value for marketing and customer relationship strategies. By
identifying distinct risk profiles, financial institutions can design tailored marketing campaigns that
align with the financial behavior and needs of each segment. For instance, low-risk clients may be
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offered premium financial products with favorable terms, while higher-risk segments could receive
educational content or alternative financial solutions aimed at improving creditworthiness. This
targeted approach enhances customer engagement, increases conversion rates, and fosters long-term
loyalty. Moreover, integrating predictive insights into marketing analytics allows institutions to
anticipate customer needs, personalize communication, and allocate resources more efficiently,
ultimately driving both profitability and customer satisfaction.
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