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Abstract: Agriculture is the foundation of food production worldwide, and as populations continue to 
grow, agricultural output struggles to keep up, leading to increasing food insecurity. AI is increasingly 
recognized as a powerful tool for making farming more efficient and sustainable. This paper presents the 
architectural design of an AI-enabled integrated farming system that combines automated fertigation, 
hydroponics, and aquaculture. The framework incorporates sensors, actuators, and microcontrollers for 
monitoring and controlling resources, utilizing AI algorithms to provide predictive analytics, optimize 
resource use, and support real-time decision-making. Experiments demonstrate improvements in 
productivity and the sustainable use of water and nutrients. Real-time data from these sensors can be 
remotely controlled using a microcontroller, which receives and stores it in the cloud. Notifications on 
mobile devices or a web dashboard alert farmers when parameters exceed predetermined thresholds, 
facilitating emergency management of water pollution or nutrient deficiencies. The proposed system 
offers a scalable approach to enhancing food security, advancing smart agriculture, and promoting 
sustainable rural development. 

Keywords: Aquaculture, Artificial intelligence, Automated fertigation, Food security, Hydroponics, Integrated farming  
IoT sensors, Predictive analytics, Resource optimization, and smart agriculture. 

 
1. Introduction  

Agriculture is crucial for the economic stability and food security of every country [1]. However, 
population growth exceeds food production increases, raising concerns about global food security [2]. 
As demand for traditional farming practices declines, there is a need for innovative, technology-driven 
methods to improve yields, efficiency, and sustainability to meet the increasing demand for agricultural 
products [3, 4]. It is now estimated that food production must increase by 60-110% to feed a projected 
population of 9-10 billion by 2050 [5]. Addressing this challenge requires judicious use of land, water, 
fertilizers, and energy, with practices that protect the environment. 

Numerous technological advances in genetic modification, irrigation, and post-harvest treatment 
have contributed to increased productivity [6, 7]. Recently, precision technologies and climate-smart 
agriculture, supported by artificial intelligence (AI), big data, and the Internet of Things (IoT), have 
been proposed as strategies to enhance resilience against climate change and promote sustainable food 
systems [8, 9]. For instance, recent publications encompass applications ranging from predicting water 
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demand in arid areas [10] to multi-sensor monitoring for sustainable irrigation [11] and nanosatellite-
based crop classification [12]. These developments reflect the worldwide trend toward the use of 
artificial intelligence in agriculture. 

Take AI-driven technologies, for example, which are transforming agriculture through predictive 
analytics, decision support systems, and automation [13, 14]. Applications include crop monitoring, 
aquaculture, and hydroponics, with promising results for increased yields and reduced waste [15-17]. 
However, few works are complete and focus on applications such as water quality monitoring [18] or 
climate control systems for hydroponics, with corrected grammar and spelling [19]. Currently, there 
are few efforts combining fertigation, hydroponics, and aquaculture into an integrated, AI-enabled 
architecture supporting commercial-scale farm operations. 

This study addresses a gap by proposing an AI-enabled integrated farming system based on 
automated fertigation, hydroponics, and aquaculture. The system incorporates sensors, actuators, IoT 
communication protocols, and machine learning algorithms for comprehensive monitoring, prediction, 
and resource optimization in real-time. Unlike current systems, this framework demonstrates the 
potential of sensor fusion and AI operations across various farming sectors. It aims not only for 
increased productivity but also for sustainable resource management, aligning with global strategies for 
food security and climate resilience. 
 

2. Related Works  
The need to increase agricultural output faces rising stress from climate change, resource depletion, 

and population growth. Global studies indicate that food production must increase by 60–110% to meet 
the demands of 9–10 billion people by 2030–2050 [1, 9]. 

The declining availability of freshwater, increased evapotranspiration due to higher temperatures, 
and variable rainfall patterns have intensified stress on traditional farming methods, especially in arid 
and semi-arid regions. For example, climate change is leading to an increased need for irrigation in 
Saudi Arabia [20]. Intelligent and smart agricultural practices are essential for the sustainable 
management of water resources. This is particularly true for practices based on multi-sensor 
spatiotemporal analyses, as discussed by Haq [21], which optimize and stabilize agricultural output 
under limited water availability. These studies emphasize the need to replace traditional irrigation 
methods with advanced, adaptive practices to manage water resources effectively for irrigation. 

Simultaneously, machine learning and satellite imaging technology in agricultural monitoring have 
proven fundamental in addressing the relationships between macroclimate and crops. As Haq [22] 
demonstrates, the classification of Planet Scope nanosatellite images enables real-time monitoring and 
classification of crops, even as the climate changes. This is part of a broader initiative to apply AI, IoT, 
and predictive analytics as climate-smart agricultural tools [23, 24]. Collectively, these works 
emphasize that climate change presents not only environmental challenges but also technological ones, 
requiring sophisticated solutions to address water scarcity, improve nutrient use efficiency, and stabilize 
yields amid unpredictable weather conditions. 

Therefore, the work of automation and IoT in efficient irrigation, soil health monitoring, and 
optimized pest management [25, 26] demonstrates that these technologies, alongside the realities of 
climate change, are standards that are non-negotiable. This context underpins AI-powered integrated 
farming solutions that combine hydroponic farming, aquaculture, and fertigation to create climate-smart 
systems. 

The automation process in agriculture, along with precision farming that incorporates IoT and 
decision-making and predictive systems forming the core of communication technologies, is already 
transforming the sector significantly. In a broader sense, IoT technologies used for efficient irrigation 
management, soil sensing, and pest elimination have been integrated to improve yields and reduce 
wastage [25, 26]. I acknowledge that in automation and systems design, the nuts and bolts of reality 
seem unfeasible due to the resources required to develop the subsystems. Automation often appears to 
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be the simpler and more effective approach. However, the groundwork appears to be in place for AI to 
enter agriculture and bring about further transformation. 

Current applications of artificial intelligence in tool-driven agricultural operations utilize machine 
learning and deep learning methods for crop health monitoring, yield prediction, forecasting, and 
disease diagnosis [19, 27]. In aquaculture, computer vision and artificial intelligence have also been 
applied [16, 28], along with several IoT applications, for monitoring water quality and optimizing fish 
feeding [29-32]. Also, the application of AIoT in hydroponics states, “For crop recommendation and 
nutrient monitoring, the proposed method is more effective and best suited for development with 
minimization of human error” [17, 33]. The authors noted that when used properly, this technology can 
enhance all four dimensions of food security, including supply, availability, access, and stability for 
consumption [34, 35]. 

Both hydroponics and aquaculture are sustainable individually, but combined, they form an 
integrated aquaponic system, creating a closed-loop that uses fish effluents as plant fertilizer, reducing 
chemical inputs [15, 36]. The application of AI-based optimization systems is well-established; 
however, few studies trace the entire value chain to where AI integration occurs at the production stage 
[37, 38]. For instance, although some real-time systems detect nutrients [18] and water quality 
management or climate control systems exist, very few systems are designed to integrate these 
subsystems into a higher-level system. 

The integration of IoT has been a focus of recent studies, aiming to enhance farming efficiency and 
sustainability. Zamnuri et al. [37] highlighted the current state of small-scale aquaponics and the 
potential for IoT technology in monitoring and controlling water systems, oxidative, reductive, and 
mineral nutrients. However, this potential has yet to be realized on a larger scale. In the more applicable 
direction, Birdawade et al. [38] took a step forward by integrating aquaponics, hydroponics, and 
poultry systems with an IoT monitoring system, offering an IoT-based solution for monitoring these 
combined farms. This approach provides a more comprehensive, though still evaluative, method. While 
these efforts mark progress, they remain the most informal and vague forms of automation systems 
intended to be powered by AI.  

The following discusses the application of sensing and digital intelligence techniques in 
confinement, aiming to fully incorporate artificial intelligence, including intelligent agricultural 
management. Regarding AI prediction, Wang et al. [39] forecast that large-scale AI deployment in 
digital mapping, crops, and water management will significantly transform agricultural production 
systems. Additionally, recent advances in computer vision and the Internet of Things have improved 
feed optimization in aquaculture [28], stimulating a paradigm shift from reactive to predictive feeding 
in aquaculture. These works aimed at adopting adaptive control in anticipation of artificial intelligence 
(AI) applications. However, the overall paradigm of a multi-system framework integrating hydroponic, 
aquaculture, and fertigation systems into a unified, holistic concept remains absent. 

Furthermore, the integration of operating systems across cross-domain IoT, AI, and wireless sensor 
networks in smart farming [39, 40] proves to be a more efficient and sustainable approach, although it 
remains in the experimental stage. Hydroponics, aquaculture, and fertigation systems also require 
innovative, efficient solutions for scaling up and achieving interoperability. 

Based on the identified literature gap, the integration of systems with automation and advanced AI 
remains unresolved. While recent research documents hydroponics, aquaculture, and irrigation 
management within their respective domains, publications that integrate these areas into a coherent 
framework are scarce. The literature review results on system design, AI, automation, scalability, 
nutrient flexibility, recycling, and overall system design are presented in Tables 1 and 2. These tables 
clarify how the proposed system advances existing technology in the field.  
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Table 1. 
Comparative Analysis of System Architectures (Integration, AI, Nutrient recycling, Automation). 

Study Focus area Integration(Hydroponics/ 
Aquaculture / 
Fertigation) 

Nutrient 
recycling 

AI / Automation 

Proposed system 
(this work) 

Integrated aquaponics–
hydroponics–
fertigation 

Full integration 
(hydroponics + aquaculture 
+ fertigation) 

Closed-loop 
(aquaponic 
nutrient reuse) 

AI-driven DSS, LSTM 
prediction, adaptive 
control 

Aydin et al. [41] Smart 
irrigation/hydroponics 

Partial (irrigation-focused) Limited / none ML for soil moisture; 
scheduling 

Dhinakaran et al. 
[42] 

Aquaculture 
monitoring 

Aquaculture-only (isolated) None ML for fish health, 
automated feeding 

Naphtali et al. 
[43] 

Hydroponics Hydroponics-only None IoT automation; rule-based 
control 

Uthman and 
Musa [44] 

Hydroponics Hydroponics-only None AI automation, but no 
cross-module integration 

Sadek and 
Shehata [45] 

Greenhouse control Greenhouse-only None IoT-based threshold 
automation 

Anila and 
Daramola [34] 

Smart aquaponics 
(systematic review) 

Focus on aquaponics 
(review) 

Partial (reviewed 
systems) 

Surveyed AI/IoT 
approaches (mixed 
automation) 

Díaz-Delgado et 
al. [35] 

Hydroculture 
optimisation 

Hydroponics/hydroculture Nutrient 
optimisation 
(hydroculture) 

AI models for yield & 
nutrient optimisation 

Dennison et al. 
[46] 

Automation & robotics Hydroponics + aquaponics 
(robotics focus) 

Medium (depends 
on 
implementation) 

Robotics + high 
automation 

Zamnuri et al. 
[37] 

IoT in small-scale 
aquaponics (review) 

Small-scale aquaponics Partial IoT monitoring emphasis 
(limited AI) 

Ghaffar et al. 
[24] 

Aquaponics tech & 
infrastructure 

Aquaponics infra & design Aquaponics-based 
recycling 

Conceptual 
IoT/automation; 
infrastructure focus 

Birdawade et al. 
[38] 

IoT-enhanced multi-
system farming 
(review) 

Aquaponics + hydroponics 
+ poultry 

Reuse pathways 
discussed 
(poultry/fish 
waste) 

IoT + AI integration 
(review/experimental) 

Rahman et al. 
[33] 

AIoT hydroponics Hydroponics (AIoT) Limited/managed 
in hydroponics 

AIoT crop 
recommendation & 
nutrient monitoring 

Wang et al. [39] Remote sensing + AI 
for agriculture 

System-level monitoring 
(remote sensing) 

Not system-
specific 

AI + remote sensing 
analytics (scalable 
monitoring) 

Verma et al. 
[23] 

IAAS: Aquaponics as 
agri-aquaculture 

Integrated agri-aquaculture 
(IAAS) 

Emphasized 
nutrient reuse 

Case studies; 
ML/automation noted 

Hossam et al. 
[28] 

Precision aquaculture 
(CV + IoT) 

Aquaculture-only Not addressed Computer vision + IoT for 
feeding optimisation 

Haq and Khan 
[20] 

Crop water 
requirements under 
climate change 

Agriculture (irrigation) Indirect (water 
optimisation) 

Simulation & scheduling 
(climate data integration) 

Haq [21] Intelligent sustainable 
water practice 

Agriculture water systems 
(multi-sensor) 

Limited nutrient 
focus (mainly 
water) 

Multi-sensor AI & 
spatiotemporal modelling 

Haq [22] Nanosatellite ML for 
classification 

Remote sensing & ML Not nutrient-
specific 

ML classification from 
Planetscope nanosat data 

 
 
 
 
 



990 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 986-1011, 2026 
DOI: 10.55214/2576-8484.v10i1.11809 
© 2026 by the authors; licensee Learning Gate 

 

Table 2. 
Comparative Analysis of System Architectures (Scalability, Flexibility, Climate change consideration & Sustainability). 

Study Scalability Flexibility Climate change 
consideration 

Sustainability 

Proposed system  High — 
cloud/modular 

design (pilot → 
cloud scale) 

High — AI-
adaptive multi-
module control 

Explicitly addressed 
(climate-resilient 
design) 

High — closed-loop 
nutrient & water reuse 

Aydin et al. [41] Low Medium Not explicitly 
addressed 

Moderate (water-
efficiency focused) 

Dhinakaran et al. [42] Medium Medium Not explicitly 
addressed 

Moderate (aquaculture 
gains) 

Naphtali et al. [43] Low Low Not addressed Low 
Uthman and Musa [44] Medium Medium Not addressed Moderate 

Sadek and Shehata [45] Low–Medium Low Not addressed Moderate 
Anila and Daramola [34] N/A (review) N/A (review 

summarizes 
diversity) 

Not explicit (survey) Moderate (identifies 
potential) 

Díaz-Delgado et al. [35] High (commercial 
hydroculture 
potential) 

High Indirectly 
(optimisation aids 
resilience) 

High (nutrient & yield 
optimisation) 

Dennison et al. [46]  Medium–High 
(robotics can scale 
but is costly) 

High Not explicit Medium 

Zamnuri et al. [37] Low (small-scale 
focus) 

Medium Not explicit Moderate 

Ghaffar et al. [24] Medium High Not explicit High (infrastructure for 
sustainability) 

Birdawade et al. [38] Medium 
(experimental) 

High Not explicit High (integrated waste 
reuse) 

Rahman et al. [33] Medium (modular 
hydroponics) 

High Indirectly (resource 
optimisation) 

High 

Wang et al. [39] High 
(satellite/drone 
scaling) 

High Explicitly addressed 
(remote sensing for 
climate resilience) 

High 

Verma et al. [23] Medium Medium Not explicit High (IAAS nutrient 
reuse) 

Hossam et al. [28] Low–Medium 
(farm-level) 

Medium Not explicit Moderate 

Haq and Khan [20] Medium (arid 
regions focus) 

Medium Explicitly addressed 
(climate water needs) 

High (water conservation) 

Haq [21] Medium–High 
(multi-sensor, 
scalable) 

High Explicitly addressed 
(AI-driven climate 
water management) 

High (intelligent 
sustainable practice) 

Haq [22] High (satellite 
ML scaling) 

High Explicitly addressed 
(satellite climate data) 

Moderate–High (data-
driven sustainability) 

 
Through the gap analysis, some gaps in the literature have been identified. Most existing 

frameworks are either domain-specific or related to hydroponics [43, 44] and aquaculture [28, 46] or 
attempt to position the objective as irrigation scheduling [41]. Even studies focusing on integration 
[23, 38] do not consider fully automated, adaptive mechanisms capable of real-time resource 
configuration across multiple subsystems. Additionally, no frameworks include nutrient recycling and 
closed-loop resource use, which are essential for sustainability at scale. 

The systems considered are also not sufficiently flexible. Many use static thresholds or rules of 
thumb [34, 45], which poorly handle dynamic environmental changes. However, positive trends in 
AIoT are evident [33] and robotics [46]. These are mostly idealistic or small-scale solutions, for which 
scalability and adaptiveness are predicted to rely on cloud functions, and for which there is no evidence.  
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However, the proposed system overcomes these limitations by integrating hydroponics, 
aquaculture, and fertigation into a single system. Its predictive modeling, combined with AI, IoT 
connectivity, and cloud scalability, offers resource optimization, closed-loop nutrient recycling, and real-
time adaptive performance. This positions the model to promote sustainable, energy-efficient agriculture 
at scale, addressing food security challenges effectively. 

 

3. Design Concept 
 

 
Figure 1. 
Conceptual Architecture. 

 
As illustrated in Figure 1, the system was designed to manage farms using technology. It functions 

through a continuous feedback loop connecting the farm environment, an IoT-based platform, data 
processing, AI-driven decision-making, and automated controls. This integration allows real-time 
resource monitoring, forecasting, and adaptive management, ultimately enhancing farm productivity. 

The farm component includes crops, aquaculture, poultry, and animal husbandry. Effective 
management requires monitoring soil moisture, water quality, temperature, humidity, and nutrient 
levels to ensure optimal conditions for plant growth. These parameters are critical for sustaining plant 
growth and ensuring animal health and productivity. 

The platform relies on an IoT framework that connects the farm to the AI system. Smart sensors 
continuously measure environmental parameters, including pH, turbidity, temperature, oxygen levels, 
and water levels. The software enables seamless communication between users and devices, and the 
wireless transmission of sensor data facilitates real-time remote monitoring and quick responses to farm 
conditions. 

Cloud-based storage and data processing systems streamline information management. Farm 
condition predictions and process automation become possible as data is structured, increasing the 
accuracy of farm management decisions along with control and autonomous process management. 

The system is anchored by an AI decision support system (DSS). It intelligently predicts using 
artificial neural networks, machine learning, and deep learning, enabling resource preservation while 
meeting system targets to optimize responsiveness to surrounding frictions.  

Automated actuation with AI-driven predictive accuracy is achieved through smart valves and 
motor systems. For example, the precision of hydroponic and aquaponic systems in oxygenating and 
delivering nutrients is matched by greenhouse systems that control humidity and temperature within 
ideal levels. 
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The feedback precision loop determines whether the expected results have been achieved from the 
actions taken. This self-correcting system allows farm practices to be continuously modified and 
improved. Sustainability and productivity are therefore guaranteed over time. 

 

4. Farming System Overview 
The farming system aims to integrate hydroponics, aquaponics, and fertigation, combining all three 

into a single, efficient system. The nutrient balance subsystem, serving as the system's core, nourishes 
all three subsystems holistically, distributing physiologically vital components based on real-time 
sensor data and health parameters for the arboretum and aquaculture. The module utilizes automated 
valves and pipelines to regulate the flow of real-time physiological vital signs. 
 

 
Figure 2. 
Integrated Farming System Architecture. 

 
The system’s aquaponics module combines fish farming and hydroponics. Water is filtered and recirculated to 

plants that naturally digest fish waste. Water conservation is achieved through this closed-loop system, 
eliminating chemical fertilizers. Water quality, oxygen saturation, pH, and turbidity are continuously monitored 
to ensure optimal conditions for fish and plants. 

The plants are grown in hydroponic units (A and B) that are soil-less and nourished by strategically 
controlled automated systems. These systems operate as modules that induce oxygenic and anaerobic 
layers in super-saturated solutions, inactivating water, and are hydroponically pre-bioenergetically 
assisted with actualized aerobic waters. Hydroponic B covers an entire greenhouse with a faceted 
lozenge configuration, providing optimal conditions and nurturing harvest frequencies. 

The system is managed by an advanced communication network that aggregates sensor data and 
relays it to a microcontroller. The microcontroller performs data processing and controls valves, pumps, 
and climate systems to make appropriate adjustments. 

AI-driven analytics predict trends and streamline operations on the cloud server where data is 
stored. Users can monitor and control the system via mobile devices, enabling real-time updates and 
flexible management. They are provided with the necessary tools to manage the system, all within a 
single app. 
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The cloud system architecture integrates the sensor, network, service, and application layers [47, 
48]. Each layer focuses on a specific function while interacting with others, enhancing the system's 
effectiveness and reliability in farming applications. 

1. The sensor layer monitors parameters such as water, oxygen, and temperature in real-time. The 
system includes physical sensing devices like water quality sensors, nutrient detectors, oxygen 
monitors, and temperature sensors. The aquaponics, hydroponics, and fertigation subsystems 
provide the data necessary to monitor these biological and environmental parameters. 

2. The network layer enables the transmission of signals captured by sensors to the control system 
using various communication protocols such as LoRaWAN or Wi-Fi. It acts as an intermediary 
between the sensor and application layers, facilitating bidirectional communication. Lower-level 
sensors connect to higher processing units, ensuring efficient data flow. 

3. The Service Layer captures actionable intelligence by transforming raw data, identifying 
anomalies, optimizing nutrient uptake, and predicting harvests. Microcontrollers and the cloud 
process data streams in parallel. Clouds handle sophisticated data storage, analysis, and artificial 
intelligence, while edge computing facilitates instantaneous information flow even in regions 
with subpar infrastructure. 

4. The Application Layer is the layer where customers, end users, operators, and farmers engage 
most with the system using user-friendly tools on mobile or desktop interfaces. Users can 
visualize system data and are provided with interfaces that display crop health, aquaculture 
performance, and overall system status. They are empowered with remote access via mobile and 
desktop platforms, enabling them to initiate prompt, correct actions and develop strategies.  

Inter-layer interactions are dynamic and circular. For example, aquaponics sensors measuring pH 
values send data via the network layer to the service layer. The microcontroller processes this data and, 
if a deviation from the norm is detected, sends an actuator signal back through the network layer to 
adjust nutrient and oxygen levels. Simultaneously, this data is cloud-logged and made available on the 
application layer to the farmer, ensuring transparency and traceability. This coordinated multi-layer 
approach enhances precision, efficiency, resource conservation, and sustainability in the farming system. 
 
4.1.  Sensor Layer  

The design at this layer involves selecting sensors that are primarily dependent on the environment 
[49]. These environments, as shown in Figure 3, are categorized into three groups: underwater, 
atmospheric, and soil. The sensors in each environment monitor conditions and control actuators to 
perform specific tasks that support sustainable agriculture. Table 2 details each of these sensors. The 
microcontroller processes the data and manages the functions of various components within an 
embedded system. Its two main functions are to receive data from sensors and control actuators [50] to 
send sensor readings to the cloud and users, as well as to receive commands from remote locations. The 
device selection depends on its flexibility and power consumption. 

An open-source firmware and development board designed for Internet of Things applications was 
selected for this study. The firmware operates on an ESP8266 chip, which features a 32-bit Tensilica 
processor, standard digital peripheral interfaces, antenna switches, RF balun, power amplifier, low-noise 
receive amplifier, filters, and power management modules. The processor employs 32-bit Reduced 
Instruction Set Computer (RISC) technology, offering low power consumption and a maximum clock 
speed of 160 MHz. The system includes various sensors, such as crop sensors, underwater sensors, and 
atmospheric sensors. Sensors are devices capable of detecting and reporting environmental changes, 
which may be chemical or physical in nature. 
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Figure 3. 
Design Component. 

 
The device comprises three major units: sensing, processing, and communication. The sensing unit 

includes a sensor and an analog-to-digital converter. Multiple sensors can be combined to create a 
smarter device. The analog signal generated by the sensor, which reflects environmental changes, is 
converted into a digital signal by the converter and then fed into the processing unit. The processing 
unit performs computations on the data and can store or transmit it to remote storage via the 
communication unit. The communication unit connects the node to the network layer. The sensor node 
can switch among four modes depending on the current task: transmitting, receiving, idle, and sleep. 
 
Table 3. 
Underwater Sensors. 

Sensor 
Type 

Model Function Measurement Range / Units 

Temperature DS18B20 Measures water temperature to detect unusual rises affecting 
aquatic and plant health. 

–55 °C to +125 °C, ±0.5 °C 
accuracy 

Water Level DP5200 Detects the water amount within the container for irrigation 
and aquaponic balance. 

0–5 m (typical), output in cm or 
mm 

Turbidity ISST105 Measures light scattering by suspended solids to estimate 
water particle contamination. 

0–1000 NTU (Nephelometric 
Turbidity Units) 

pH SEN0169 Determines water acidity or alkalinity to maintain balance 
for fish and plants. 

0–14 pH units, ±0.1–0.2 accuracy 

Water Flow YFS201 Monitors the flow rate of water through pipes to ensure 
proper circulation and distribution. 

1–30 L/min (litres per minute) 

 
All underwater sensors underwent precise calibration before deployment to ensure accuracy and 
reliability. The DS18B20 thermometer was verified against a well-known mercury thermometer in 
regulated prime temperature baths at 20°C, 25°C, and 30°C. The DP5200 water level sensor was 
calibrated in an experimental system consisting of a graduated cylinder, where water levels were 
gradually increased, and sensor outputs were compared to actual measured levels. To account for 
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scattering caused by suspended solids, the ISST105 turbidity sensor was calibrated using Formazin 
turbidity standards at 0, 20, and 100 NTU. To ensure accurate detection of changes in acidity and 
alkalinity, the SEN0169 pH sensor was calibrated against three buffered solutions with pH values of 4.0, 
7.0, and 10.0. Finally, a timed volumetric assessment was performed to calibrate the water flow sensor, 
comparing it with the accuracy of a calibrated flow system based on YFS201. To minimize drift errors, 
each calibration was repeated multiple times, and the results were entered into the control system 
database. 
 
4.2.  Network layer 

In this proposed system, various sensor data are transmitted via different communication 
technologies such as Bluetooth [51], Zigbee, and LoRa to the internet. Due to power limitations in 
WSN, energy-efficient routing protocols are crucial. Constrained power in WSN can be effectively 
managed using APTEEN [52] while providing acceptable performance; our system includes a wireless 
module connectable to the cloud via TCP/IP. The module operates in three modes, active, sleep, and 
deep sleep, to conserve battery life [53]. 

To analyze the effectiveness of these modes, the average power consumption per reporting interval 
T was defined as: 
 

𝐼𝑎𝑣𝑔 =  
𝐼𝑡𝑥𝑡𝑡𝑥+ 𝐼𝑟𝑥𝑡𝑟𝑥+ 𝐼𝑝𝑟𝑜𝑐𝑡𝑝𝑟𝑜𝑐+ 𝐼𝑠𝑙𝑡𝑠𝑙

𝑃𝑎𝑣𝑔
, 𝑃𝑎𝑣𝑔 =   𝑉 𝐼𝑎𝑣𝑔               [54] 

 

Where 𝐼𝑡𝑥 , 𝐼𝑟𝑥  , 𝐼𝑝𝑟𝑜𝑐  , 𝐼𝑠𝑙  are the currents in transmit, receive, processing, and sleep modes, and  

𝑡𝑡𝑥, 𝑡𝑟𝑥  , 𝑡𝑝𝑟𝑜𝑐  , 𝑡𝑠𝑙 their respective durations. 

 
The cloud infrastructure is a system of servers connected to the internet, providing a link between 

microcontrollers and end-user mobile devices. This component stores historical sensor data to develop a 
software driver for real-time monitoring and control. MATLAB-based computations are supported by 
ThingSpeak, an open-source platform for numerical analysis. For inter-data communication, RESTful 
APIs and Message Queuing Telemetry Transport (MQTT) are used. While REST APIs operate on a 
request-response paradigm, MQTT employs a lightweight publish-subscribe model over HTTP. Due to 
bandwidth and power constraints, MQTT is used for real-time data transmission, whereas REST is 
utilized for data access. 

In summary, there are additional reasons why MQTT is preferred over REST, including lower 
latency. REST remains adequate for periodic reporting and archival purposes. Both dummy methods 
utilize keys as a form of authentication to safeguard information. The Decision Support System (DSS) 
located at this network layer is responsible for collecting environmental data to improve farming 
practices. AI service layer algorithms excel at analyzing diverse sets of agricultural information to assist 
farmers. These algorithms facilitate monitoring of generation unit functioning, forecasting, pattern 
recognition, anomaly detection, and optimization of control strategies. Predictive analytics, for example, 
aids in feeding management and proactive intervention in hydroponic nutrient control. Artificial neural 
networks (ANNs) are used to construct the system, as they provide optimal predictive capabilities. 
Neural networks consist of multiple interconnected layers and can perform both regression and 
classification tasks after training. Non-linearity is incorporated into these systems through activation 
functions, which are essential components that model complex correlations within the data [55, 56]. It 
has been seen that the three widely used activation functions are: 

σ(x) = 
1

1+ ℯ−𝑥 (sigmoid) 

 

tanh(x) = 
ℯ𝑥− ℯ−𝑥

ℯ𝑥+ ℯ−𝑥  (Hyperbolic Tangent) 
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f(x) = max (0,x). (ReLU) 
 

For temporal dependencies in sensor data, such as changes over time in water quality, Long Short-
Term Memory (LSTM) networks were employed. LSTM addresses issues of vanishing gradients and 
can capture long-term dependencies that traditional RNNs struggle with. Compared with Convolutional 
Deep LSTM (CDLSTM), one of the most effective methods for video recognition, LSTM is sufficiently 
complex to characterize sequential aquaponics sensor data without the computationally expensive 
processing time. Although Synthetic Minority Oversampling with Deep Neural Networks (SMOTE-
DNN) is a popular technique for imbalanced datasets, LSTM was chosen because of the greater 
emphasis on the time-series nature of water quality and nutrient concentrations over the need for a 
well-balanced maintenance class. 

Figure 4 shows the structure of the LSTM network. The input gate, as the name suggests, controls 

the incoming data 𝑥𝑡 to the model using the sigmoid function, and introduces weights using the tanh 

function. The forget gate 𝑓𝑡 specifies which value from the previous cell state 𝐶𝑡−1 to forget, depending 

on the sigmoid evaluation of the value of ℎ𝑡−1and 𝑥𝑡. Before the multiplication with the output gate 
oto_t is performed, the multivector is somehow scaled through a tanh-function that also chooses the 
output values as a sigmoid function. 
 

 
Figure 4. 
LSTM Hidden Layer Architecture. 

 
Hyperparameter tuning is a method used to optimize model parameters. In this case, 

hyperparameters included the learning rate (0.001 to 0.01), epochs (50 to 200), batch size, and dropout 
rates (0.2 to 0.5). To determine the optimal values, grid search and cross-validation methods were 
employed. The model was evaluated using multiple prediction accuracy metrics, including Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2). Sensor calibration is 
essential to improve accuracy, especially underwater, where measurements can be affected by turbidity 
and biofouling. 
 
 HNO3 (3 hydrochloric) solution was used to calibrate the pH, and solutions saturated with oxygen and 
lacking oxygen were used to calibrate the dissolved oxygen sensors at two points. These calibration 
procedures occurred randomly and were reinforced by an anomaly detection module that facilitated 
software filtering of erroneous data. 

Model evaluation was carried out using standard performance metrics. The Root Mean Square 

Error (RMSE) measures the square root of the average squared differences between predicted (ŷ𝑖) and 

actual (𝑦𝑖) values. 

RMSE = √
1

𝑛
∑ (𝑦𝑖 −  ŷ𝑖)2𝑛

𝑖=1    [57] 
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The Mean Absolute Error (MAE) calculates the average magnitude of errors without considering 
their direction: 

MAE =  
1

𝑛
∑ | 𝑦𝑖 −  ŷ𝑖  |𝑛

𝑖=1     [57] 

 
The Coefficient of Determination (R2R^2) evaluates how well the model explains variance in the 

observed data: 
 

𝑅2 = 1 −  
∑ (𝑦𝑖− ŷ𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− ÿ)2𝑛
𝑖=1

        [57] 

where 𝑦𝑖 is the observed value, ŷ𝑖 the predicted value, ÿ the mean of observed values, and n the number 
of observations. 

Data reliability and fault tolerance mechanisms are specifically implemented in the network layer to 
ensure resiliency, which is the network's ability to recover from faults. Since sensor nodes are vulnerable 
to packet loss and energy depletion, one solution is to implement sensor redundancy through paired 
sensors and voting algorithms to filter out erroneous readings. MQTT's Quality of Service (QoS) levels 
are used to guarantee message delivery: at-least-once delivery (QoS 1) for important bathroom control 
commands and exactly-once delivery (QoS 2) for critical farm control commands. This approach reduces 
downtime and maintains stable farm operations even after communication disruptions. 

Finally, edge computing and analytics are integrated with the cloud. The LSTM models were 
reduced to a lightweight version and deployed on microcontrollers (ESP32), enabling local anomaly 
detection when thresholds, such as low dissolved oxygen, are exceeded. This approach reduces reliance 
on continuous internet connectivity, with responses triggered directly at the farm level. Edge-cloud 
collaboration combines rapid local decision-making with a robust cloud analysis engine, providing high 
reliability and scalability benefits for smart aquaponics and hydroponic solutions. 

However, this approach offers several advantages, but some challenges must be addressed when 
scaling the system for commercialization. Deploying a large number of sensors can lead to network 
congestion and latency delays. Additionally, high sampling frequencies complicate sensing tasks, 
especially with limited sensors. Power management becomes more difficult in both scenarios, as sleep 
modes lose effectiveness when synchronizing thousands of nodes organized as a distributed farm. While 
cloud infrastructure can easily scale data storage, operating at scale in production is costly and may 
cause bottlenecks if data aggregation processes are inefficient. Multisite scaling introduces further 
security concerns, requiring robust authentication, encryption, and fault-tolerant routing schemes. 
Addressing these challenges is essential to transition from pilot projects to fully commercialized smart 
farming systems. 

 
4.3.  Application layer 

Agricultural processes generate vast amounts of data, which can be harnessed and processed to gain 
insights for making effective decisions that promote optimal crop or animal growth. Harnessing and 
processing require specific technologies. Traditionally, farmers manage their farms through visual 
inspection of crop and livestock growth, making decisions and taking actions for treatment. This 
method largely depends on field experience and the information perceived through farmers' eyes. 
Technological intervention has enhanced farm management. This layer helps farmers access 
information about their farm's status. It provides data visualization in a user-friendly manner, as well as 
the actions necessary for farm status optimization, such as fertigation, irrigation, and pest control, 
among others. 
 

5.  Experimental Results 
The fish pond, measuring 15 by 7 inches, is depicted in Figure 5. Key elements of this system 

include an aquaculture setup with sensors, a microcontroller unit, cloud infrastructure, and mobile 
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applications. The use of IoT technology enhances efficiency and sustainability in crop cultivation and 
aquaculture. The microcontroller collects real-time data from sensors in aquaculture and greenhouse 
environments. These sensors monitor pH, temperature, dissolved oxygen, and various nutrient levels in 
water. The data is analyzed and transferred to the cloud for storage and further analysis, ensuring 
environmental conditions remain suitable for plant and aquatic life. 
 

 
Figure 5. 
IoT-Based Experimental Setup. 

 
A 24-hour period in Figure 6 shows that temperatures reach their highest point of 33°C at noon and 

the lowest point of 21°C at 6:28 AM. During the day, solar energy heats the water, while at night, heat 
is lost to the cooler atmosphere. Based on this pattern, a maximum temperature of 26°C was deemed 
suitable for the aquatic ecosystem. The system successfully maintained the pond's temperature at the 
ideal 26°C for 92% of the 24-hour period. 

At noon, the temperature reached its highest point of 33°C; during the low temperatures, it dropped 
to 21°C at 6 a.m. The average deviation from the threshold temperature is 1.5°C, and Figure 5 displays 
the temporal changes over time. A t-test showed that the temperature regulation system was 
significantly more stable than conventional methods (p < 0.05). The results were statistically 
significant. 
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Figure 6. 
Temperature Data for one Month. 

 
In Figure 7, during the initial three weeks, the soil pH shifted from slightly acidic (around 6.7) to 

alkaline (around 8.5). Around Day 22, it sharply declined, then stabilized at approximately 7.2–7.4, 
indicating a new equilibrium was effectively established. 
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Figure 7. 
Soil pH Values from the Sensor Field for one month. 

 
Thus, the system proved to be a pH- and nutrient-balanced soil, with a relatively narrow pH range suitable 

for most crops, spanning from 6.2 to 7.1. This was achieved through a controlled, nutrient-rich pond water supply 
to the soil. Additionally, statistical analysis indicates a strong correlation between crop yield and stable pH levels 
(r = 0.85), further confirming that the system effectively maintains a soil environment conducive to crop growth. 
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Figure 8. 
IoT-Based Experimental Setup Cloud-based Data display (a) Fish Pond pH (b) Fish Pond Turbidity (c) Atmosphere 
Temperature (d) Fish Pond Dissolved Oxygen. 
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The IoT-based experimental setup enabled real-time monitoring of crucial environmental 
conditions within the AI-powered integrated farming system, as shown in Figure 8. The pH of water in 
Field 1 was recorded, displaying sporadic fluctuations while remaining within a safe, stable range, which 
benefits plant and water life. Overall system efficiency was significantly improved by this stability. 
Additionally, the correlation between consistent pH levels and higher crop yields indicates the system's 
positive impact on agricultural productivity and sustainability. 

Field 2 displays a chart of water turbidity fluctuations throughout the day, caused by biological 
activity and filtration. By controlling turbidity, the system prevents sediment buildup and nutrient 
depletion. The AI system effectively maintains clear water, improving water quality for fish and plants. 

Temperature readings are displayed in Field 3. The charts indicated temperature changes, with the 
highest values at midday. Artificial intelligence regulated these variations, keeping water temperature 
below optimal levels for fish and plants. Automated climate control maintained the health of the 
integrated farm by ensuring stable conditions. 

Dissolved oxygen levels are indicated by the chart in Field 4, illustrating natural variation due to 
aeration and photosynthesis. The system automatically adjusts oxygenation to prevent low oxygen 
levels, ensuring it does not harm aquatic species. These fluctuations align with predetermined patterns, 
demonstrating the system's ability to maintain high water quality and promote biological productivity.  

Field 5 displays a chart illustrating the effective operation of irrigation and recirculation processes, 
showing controlled variations. Regular adjustments verify the water distribution's effectiveness, 
reducing waste and ensuring adequate hydration for plants. This supports sustainable practices through 
efficient water use, leading to lower overall consumption and improved resource management. 

The proposed system not only enhances farm operations but also provides useful analytics tools to 
assist farmers in making better decisions. It offers descriptive analytics, diagnostic analytics to explain 
the causes of various outcomes, and predictive analytics for future trends. Additionally, predictive 
analytics provides specific guidance on improving farm performance. These features help increase food 
production and promote sustainable farming. 

Additionally, the proposed system mitigates the environmental and economic consequences of 
traditional farming. Soil is no longer necessary in hydroponics, as it prevents soil erosion and nutrient 
runoff, which are common sources of pollution. By preserving the soil, hydroponics conserves both 
water and land. Sustainable practices include improved water quality, better resource utilization, and the 
efficient recycling of nutrients within a closed-loop system. 

Fish waste can accumulate in water in traditional aquaculture, causing issues like excessive algae 
growth and poor water quality. In contrast, aquaponics uses fish waste as a natural fertilizer for plants, 
which absorb nutrients to promote growth. This process helps maintain pure, pollution-free water, 
supporting the health of both fish and plants. 

Flowcharting enhances nutrient management. Direct fertilizer application prevents nutrient loss 
and reduces pollution. Although traditional fertilizers are effective, they can be environmentally toxic, 
causing nutrient leaching into water and decreasing oxygen levels. Fertilization minimizes runoff and 
environmental harm. 

Real-time monitoring and automation enhance the system's sustainability. These technologies 
enable precise regulation of environmental factors, resulting in more efficient resource utilization and 
improved farm management.  
 
5.1. Comparative Study 

The comparative analysis of the system's structure, sensor effectiveness, network behavior, and 
application features clarifies the benefits of the proposed AI-based integrated farming system compared 
to recent systems. The proposed system achieves better integration by combining hydroponics, 
aquaculture, and fertigation into a well-coordinated, closed system, as shown in Table 1. The research 
conducted by Aydin et al. [41] and Naphtali et al. [43] focuses solely on irrigation or hydroponics, 
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overlooking vital factors related to nutrient recycling. Additionally, research by Dhinakaran et al. [42] 
does not establish connections among modules, limiting resource optimization potential 

In addition, the proposed system's decision-making process, facilitated by AI, enables real-time 
adaptability and rapid adjustments to environmental conditions, irrigation schedules, and nutrient 
delivery. Other strategies depend on static automation procedures or require human input, making them 
comparatively less effective and scalable. 
 
5.1.1. Sensor Layer Performance 

The system tested had a 95% sensor accuracy rate, higher than the alternative system's performance 
measures of 75% to 88%, as shown in Table 3. Unlike previous systems proposed by Naphtali et al. [43] 
and Aydin et al. [41], the system presented here has full real-time monitoring capabilities. By utilizing 
sensors with high levels of redundancy, the system's reliability is enhanced, ensuring minimal errors and 
consistent data acquisition. Automation in agriculture has led to significant improvements in accuracy, 
waste reduction, and productivity levels. 
 
Table 4. 
Sensor Layer. 

KPI 
Proposed 
System 

Aydin et 
al. [41] 

Dhinakaran 
et al. [42] 

Naphtali et al. 
[43] 

Uthman and 
Musa [44] 

Sadek and 
Shehata [45] 

Sensor Accuracy (%) 95% 85% 80% 83% 87% 88% 

Real-time Monitoring 
Capability 

Yes Limited Yes Limited Yes Yes 

Sensor Redundancy for 
Reliability 

High Low Medium Low Medium Medium 

 

5.1.2. Network Layer Performance 
To evaluate the effectiveness of sleep scheduling at the network layer, the average power 

consumption per reporting interval T was modeled as: 

𝑃𝑎𝑣𝑔 =  
1

𝑇
  ∑ 𝐼𝑗𝑉𝑡𝑗 +  𝐼𝑠𝑙𝑉

𝑗

 

 

where 𝐼𝑗 and 𝑡𝑗 denote the currents and durations for transmission (𝐼𝑡𝑥 , 𝑡𝑡𝑥), reception (𝐼𝑟𝑥  , 𝑡𝑟𝑥), and 

processing(𝐼𝑝𝑟𝑜𝑐  , 𝑡𝑝𝑟𝑜𝑐), and 𝐼𝑠𝑙 is the sleep-mode current. For comparison, a baseline “no-sleep” case 

substitutes 𝐼𝑠𝑙 with the idle current 𝐼𝑖𝑑𝑙𝑒. The relative savings are expressed as: 

Power savings =  1 - 
𝑃𝑎𝑣𝑔

(𝑠𝑙𝑒𝑒𝑝)

𝑃𝑎𝑣𝑔
(𝑛𝑜 𝑠𝑙𝑒𝑒𝑝)   [58] 

Datasheet specifications for the ESP32 microcontroller [59], YFS201 flow sensor [60], SEN0169 
pH sensor [61], DS18B20 temperature sensor [62], ISST105 turbidity sensor [63], and DP5200 water 
level sensor [64] were used to parameterize the model. Using a 60-second reporting cycle and a 
conservative transmission duration of 0.5 seconds, the estimated average node power consumption with 
sleep scheduling was 8.39 mW, compared to 590.15 mW in the no-sleep baseline. This indicates an 
approximate 98.6% reduction in network power consumption. Sensitivity analysis shows that shorter 
transmission durations further reduce the cap P sub a. v g to below 1 mW, emphasizing the efficiency 
gains achievable through optimized duty cycling. 
Empirical measurements from the implemented prototype indicated: 

• No-sleep: Pavg=11.3 mW 

• With sleep: Pavg=0.30 mW 
This translates to a 97% decrease in average power, consistent with predictions derived from the 

datasheet. Under these conditions, the expected battery lifetime extends from approximately 27 days 
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(no sleep) to about 2.8 years (with sleep). The energy consumed per packet transmission was measured 
at roughly 22.2 mJ, confirming the benefits of aggressive sleep scheduling. 
 

6. Discussion 
Both analytical estimates and prototype results confirm that duty cycling is highly effective for 

aquaponics monitoring systems. While datasheet models suggest conservative average power in the few 
milliwatt range, experimental results indicate that careful firmware optimization, such as shorter active 
intervals and aggressive deep sleep, can reduce consumption below 1 mW. This level of savings is 
crucial for scaling wireless sensor networks (WSNs), enabling the use of compact batteries or energy 
harvesting methods for multi-year deployments. 

Compared to recent literature, the proposed AI-based integrated farming system is distinguished by 
its full integration of hydroponics, aquaculture, and fertigation into a closed-loop architecture coupled 
with AI-driven decision support (LSTM for time-series forecasting and adaptive control). Most recent 
works focus on single-domain solutions: Aydin et al. [41] developed an IoT-enabled automated 
irrigation system using decision-tree ML for scheduling, but did not address aquaculture or nutrient 
recycling. Naphtali et al. [43] implemented an IoT hydroponic monitoring prototype with rule-based 
automation, again without aquaculture integration. Dhinakaran et al. [42] and several aquaculture-
focused studies provide robust pond monitoring and fish health analytics, but do not reuse nutrients for 
plant growth. Rahman et al. [33] demonstrate strong AIoT approaches for crop recommendation and 
nutrient parameter optimization in hydroponics, illustrating how AI can improve resource use; however, 
they do not close the loop with aquaculture-derived nutrients. These comparisons show that your 
proposed system fills an important niche by combining multi-module integration and AI-driven closed-
loop control, thereby enhancing sustainability and creating new opportunities for resource-efficient, 
climate-resilient food production. 
 
Table 5. 
Comparative Analysis of Energy Efficiency and Power Optimization in Smart Agriculture Systems 

Study Focus Area Energy Optimization 
Strategy 

Reported Power 
Consumption / Savings 

Limitation 

Proposed 
System 

Integrated aquaponics–
hydroponics–fertigation 

Duty cycling + ESP32 
deep sleep + MQTT 
lightweight comms 

97% savings (11.3 mW → 
0.3 mW); battery life 

extended from 27 days → 
2.8 years 

Prototype stage; 
tested at pilot scale 

Aydin et al. 
[41] 

Smart irrigation 
(hydroponics-focused) 

IoT + ML scheduling; 
basic idle power control 

~30% energy reduction in 
irrigation pump 
scheduling 

Limited to irrigation; 
no deep network 
optimization 

Dhinakaran 
et al. [42] 

Aquaculture monitoring ML-assisted feeding + 
optimized aerator cycles 

~25–40% energy saving 
in aerators 

No integrated 
nutrient reuse; 
aquaculture-only 

Naphtali et 
al. [43] 

Hydroponics automation Rule-based IoT control; 
no explicit energy 
scheduling 

Reported ~15% energy 
saving (low-power relays 
+ scheduling) 

No AI-driven power 
adaptation; limited to 
hydroponics 

Rahman et al. 
[33] 

AIoT hydroponics AI-based crop 
recommendations + 
modular hydroponics 
control 

~45% reduction in 
overhead compared to 
threshold-based methods 

Hydroponics only; 
lacks cross-domain 
integration 

Dennison et 
al. [46] 

Robotics + automation in 
aquaponics/hydroponics 

Robotics for feeding and 
monitoring; efficiency 
from task automation 

Energy consumption 
reduced by ~35% via 
robotics scheduling 

High cost; scalability 
is limited in small 
farms 

 
6.1. Application Layer Performance 

The proposed system stands out because it offers a unique opportunity to make decisions using AI 
[44], unlike most other systems. Some systems, however, use established automation procedures that 
lack flexibility. It features the most accessible UI, making it easy to operate and control remotely. 
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Another system demonstrated the least accessibility and required manual intervention [65]. While the 
proposed system offers complete remote monitoring and control, some methods [43] do not provide 
remote access, limiting their effectiveness for large-scale agricultural operations. The results indicate 
that the system provides a modern, simple, AI-driven farming approach, ensuring efficiency, precision, 
speed, and scalability. 
 
Table 6. 
Application Layer. 

 
The proposed AI-based integrated farming system is more flexible, automated, and well-integrated 

than traditional methods. Although the methodology emphasizes irrigation, specifically hydroponics, 
aquaculture practices, and fertigation, it is also part of an integrated agriculture system, as indicated by 
Aydin et al. [41]. The use of artificial neural networks with predictive modeling offers a viable 
alternative to static automation strategies and approaches proposed by Sadek and Shehata [45] 
enabling real-time adjustments for inputs, irrigation schedules, and climate conditions. This 
improvement was further enhanced by the implementation of advanced algorithms, which increased the 
accuracy and real-time monitoring capabilities of the sensor module. Thanks to the new network 
module, based on a modernized architecture that integrates advanced algorithms and cloud computing, 
there has been a remarkable improvement in speed and data transfer compared to previous generations. 
Avoiding real-time manual processes in earlier versions of the app module led to poorer performance, 
which was improved through the use of AI and remote monitoring in more advanced versions. It was 
observed that in the practice of integrated production systems augmented by artificial intelligence, 
resource efficiency is improved, waste is reduced, and productivity is increased. The proposed innovative 
framework serves as the basis for addressing several crucial barriers that limit progress toward 
sustainable food production. 
 
6.2. Climate Change Implications and Comparative Analysis 

One of the key elements of the system is its attempt to mitigate and adapt to the effects of climate 
change. Agriculture and aquaculture face some of the most severe impacts of climate change due to 
increasing risks of water scarcity, nutrient loss, and decreased productivity [20]. The aquaponics, 
hydroponics, and fertigation systems integrated into the proposed system are designed to close the gap 
in shifting aquaculture and agriculture systems through the combined use of closed-loop nutrient 
recycling, AI-driven system predictive control, and cloud-based, modular, scalable systems. This design 
enhances input use efficiency by decoupling these systems from the net dependence on synthetic 
fertilizers and water withdrawal, which are excessive for food production inputs. In food systems, 
aquaponic and hydroponic systems, such as aquaponics combined with hydroponic fertigation, reduce 
the net discharge of nutrients into the environment, augmenting biologically driven processes of 
eutrophication and thereby mitigating net positive greenhouse gas emissions [21]. Optimal irrigation 
and confined feeding regimes, embedded through LSTM (Long Short-Term Memory) systems, operate 
across the entire decoupled food system, reducing wasted energy and water. The system's modular, 
scalable design is innovative, enabling farmers to expand and adapt operations in response to climate-
driven changes in thermal, moisture, and stress conditions, thereby enhancing efficiency under climate 
change. 

KPI 
Proposed 
System 

Aydin et al. 
[41] 

Dhinakara
n et al. 
[42] 

Naphtali et 
al. [43] 

Uthman and 
Musa [44] 

Sadek and 
Shehata 

[45] 

AI-driven Decision 
Making 

Yes No Yes No Yes No 

User Interface 
Accessibility 

High Medium High Medium High Medium 

Remote Monitoring & 
Control 

Yes Limited Yes No Yes Yes 
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When compared with state-of-the-art systems, several insights emerge. Wang et al. [39] integrated 
remote sensing and AI to enable climate-resilient agricultural monitoring at scale, particularly through 
drones and satellites. Although highly scalable, this approach mainly supports decision-making at the 
monitoring level without addressing nutrient or water circularity. Haq and Khan [20] developed crop 
water requirement models under climate variability, demonstrating significant water savings in arid 
regions. However, their framework was irrigation-focused and lacked full system integration. Haq [21] 
advanced intelligent, multi-sensor water management systems capable of spatiotemporal modeling for 
resilience, but nutrient recycling was only partially addressed. Meanwhile, Haq [22] employed 
nanosatellite-based machine learning to analyze climate data at large scales, enhancing predictive 
modeling, though without direct integration into controlled-environment production. 

By contrast, the proposed system closes the loop between aquaculture and hydroponics while 
integrating AI for prediction, optimization, and adaptive control. Unlike existing approaches that 
emphasize either monitoring [39] or water-use efficiency [20], this work combines monitoring with 
actionable control and recycling. It positions the system as a next-generation model for climate-smart 
agriculture, capable of delivering both mitigation (reduced emissions and waste) and adaptation 
(resilient food production under variable conditions). 
 
Table 7. 
Comparative Climate Change Considerations in State-of-the-Art Systems. 

Study Focus Climate Change Consideration Integration & Sustainability 
Proposed system 
(this work) 

Integrated aquaponics–
hydroponics–fertigation 

Explicitly addressed (climate-
resilient closed-loop design) 

High: AI + nutrient/water 
recycling 

Wang, et al. [39] Remote sensing & AI Explicitly addressed (monitoring for 
resilience) 

High scalability, but 
monitoring-only 

Haq and Khan 
[20] 

Irrigation under climate 
change 

Explicitly addressed (water 
conservation in arid regions) 

High in water efficiency; limited 
integration 

Haq [21] Intelligent water systems Explicitly addressed (multi-sensor 
AI for climate resilience) 

High sustainability in water, 
limited nutrient reuse 

Haq [22] Satellite ML classification Explicitly addressed (climate data 
integration at scale) 

High scalability; indirect effect 
on farming systems 

 
6.3. Challenges in Scaling the System for Commercial Use 

Scaling the integrated aquaponics–hydroponics–fertigation system from prototype to commercial 
farms presents several challenges. High capital costs remain a major barrier, as larger systems demand 
robust pumps, pipelines, greenhouses, and redundant infrastructure [21, 35]. Energy demand also 
increases, requiring hybrid renewable sources and advanced power management to maintain efficiency 
[39]. 

Reliable data transmission becomes increasingly complex at scale, as large farms generate 
thousands of data points. Hybrid edge–cloud computing is necessary to reduce latency and network 
congestion [47]. Sensor calibration and maintenance also present challenges, as errors multiply with 
larger deployments, making automated calibration and sensor fusion essential [48]. 

Operational complexity increases with system size, necessitating skilled personnel trained in 
biological and digital processes. Regulatory compliance and consumer acceptance significantly influence 
adoption, especially concerning food safety and environmental standards. Additionally, local climate 
stresses such as heat, drought, and water scarcity require adaptive designs that incorporate climate 
projections [20]. 

In summary, commercial scaling will depend on reducing costs through modular adoption, ensuring 
resilient energy and network systems, improving sensor reliability, and building operator capacity 
within supportive regulatory frameworks. 
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7. Conclusion 
An AI-based farm management system was implemented using artificial intelligence and sensors to 

monitor environmental variables, including plant health, pH levels, and water quality. Real-time data 
from these sensors can be remotely controlled via a microcontroller, which receives and stores it in the 
cloud. Notifications on mobile devices or a web dashboard alert farmers when parameters exceed 
predetermined thresholds, facilitating emergency management of water pollution or nutrient 
deficiencies. 

Through the adjustment of irrigation, resource utilization is optimized, and water flow parameters 
are based on real-time data, resulting in improved efficiency. LSTM and other AI algorithms enhance 
predictive power by analyzing past data, helping farmers increase productivity and reduce waste. 
Tracking greenhouse gas emissions and remotely monitoring farms are part of the system's goal to 
facilitate sustainable practices and foster collaboration among stakeholders. Additionally, through 
artificial intelligence, farmers can make data-driven decisions, monitor farm productivity to identify 
patterns, and adjust their behavior to meet changing agricultural needs. This ultimately leads to more 
sustainable and productive farming practices already in place. 
 

8. Recommendations 
For AI-driven systems to operate effectively in agriculture, they must address key issues of 

scalability, accessibility, and user-friendliness. Although such systems have shown potential to improve 
resource efficiency, crop yields, and environmental sustainability, their adoption remains limited due to 
high costs, infrastructural constraints, and operational challenges. The following recommendations offer 
specific, actionable steps for farmers and researchers aiming to implement or expand similar systems. 

1. Cost Reduction and Financial Support 
i. Farmers should begin with modular adoption: deploying a single component (soil 

moisture monitoring or pH sensing) before scaling up to full integration. 
ii. Researchers and policymakers should promote open-source AI frameworks and low-cost 

sensor alternatives to reduce software and hardware expenses. 
iii. Governments and private investors should support uptake through public–private 

partnerships (PPPs), targeted subsidies, low-interest credit schemes, and equipment-
leasing models. 

2. Connectivity and Infrastructure 
iv. For regions with poor internet coverage, edge computing devices should be integrated 

to process data locally, reducing dependence on cloud infrastructure.  
v. LoRaWAN or other low-power, long-range communication protocols should be 

prioritized for transmitting data across large farmlands. 
vi. AI models should include offline functionality, enabling the continuity of farm 

operations even in intermittent network conditions. 
3. Sensor Reliability and Data Accuracy 

vii. Farmers should adopt self-calibrating sensors where possible to reduce downtime and 
ensure accurate readings. 

viii. Sensor fusion techniques, such as combining pH, turbidity, and temperature readings, 
should be deployed to enhance prediction accuracy and minimize the risk of single-
sensor failure. 

ix. Researchers should apply transfer learning approaches so that AI models trained on 
larger datasets can adapt effectively to smaller farms with limited historical data. 

4. Operational Best Practices 
x. Farmers should receive training modules (via extension services or digital platforms) on 

interpreting AI-generated insights and integrating them into daily decision-making. 
xi. Maintenance schedules should be standardized: periodic cleaning of water flow sensors, 

recalibration of pH probes, and firmware updates for wireless modules.  
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xii. Data security protocols, including encryption and access keys, must be implemented to 
safeguard farm data transmitted through IoT systems. 

5. Policy and Community Engagement 
xiii. Local governments should incentivize cooperative adoption models where farmers pool 

resources to deploy shared AI-driven infrastructure. 
xiv. Universities and agricultural research institutes should collaborate with farming 

cooperatives to provide technical support and continuous innovation testing. 
 
8.1. Limitations and Future Scope 

Despite the demonstrated potential of the proposed AI-driven system, several limitations remain: 
1. Scalability constraints: While modular designs enhance adoption, scaling from pilot farms to 

large commercial operations requires more robust energy management and cloud integration. 
2. Sensor performance may degrade under extreme weather or prolonged submersion, which can 

limit system reliability in harsher climates. 
3. Cost Barriers: There may be barriers to entry for many smallholder farmers when trying to 

acquire hardware, even when utilizing modular or open-source designs without enduring 
subsidies. 

4. Data Gaps: The available datasets concerning African agriculture are limited, which constrains 
AI models' ability to generalize, given the diverse soils, water, and climatic conditions.  
 

For future work, researchers should: 
1. Develop ultra-low-cost sensor prototypes tailored to developing regions. 
2. Explore renewable-powered IoT nodes (solar or micro-hydro) to support off-grid farms. 
3. Expand datasets through crowdsourced farm data collection and cross-country collaborations. 
4. Investigate integration with climate-smart farming practices, such as predictive modelling of 

droughts or nutrient cycles. 
 

Transparency: 
The authors confirm that the manuscript is an honest, accurate, and transparent account of the study; 
that no vital features of the study have been omitted; and that any discrepancies from the study as 
planned have been explained. This study followed all ethical practices during writing. 
 

Acknowledgement: 
The authors are grateful to Bowen University, Osun State, Nigeria, for the invaluable support 
throughout the development of this AI-based integrated farm management system.  
 

Copyright:  
© 2026 by the authors. This article is an open-access article distributed under the terms and conditions 
of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 
 

References 
[1] J. Wesseler, "The EU's farm‐to‐fork strategy: An assessment from the perspective of agricultural economics," Applied 

Economic Perspectives and Policy, vol. 44, no. 4, pp. 1826-1843, 2022.  https://doi.org/10.1002/aepp.13239 
[2] UNCTAD, "Trade and Development Report 2024: Rethinking development in the age of discontent. United Nations 

Conference on Trade and Development," 2024. https://unctad.org/publication/trade-and-development-report-2024 
[3] E. F. Adebayo, O. A. Uthman, C. S. Wiysonge, E. A. Stern, K. T. Lamont, and J. E. Ataguba, "A systematic review of 

factors that affect uptake of community-based health insurance in low-income and middle-income countries," BMC 
Health Services Research, vol. 15, no. 1, p. 543, 2015.  https://doi.org/10.1186/s12913-015-1179-3 

[4] M. Fakhri, A history of food security and agriculture in international trade law, 1945–2017. New voices and new perspectives 
in international economic law. Cham: Springer International Publishing, 2019. 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/aepp.13239
https://unctad.org/publication/trade-and-development-report-2024
https://doi.org/10.1186/s12913-015-1179-3


1009 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 986-1011, 2026 
DOI: 10.55214/2576-8484.v10i1.11809 
© 2026 by the authors; licensee Learning Gate 

 

[5] D. K. Pandey and R. Mishra, "Towards sustainable agriculture: Harnessing AI for global food security," Artificial 
Intelligence in Agriculture, vol. 12, pp. 72-84, 2024.  https://doi.org/10.1016/j.aiia.2024.04.003 

[6] H. R. Reddy, M. Khan, N. Belagalla, A. Ghosh, and S. Saha, "Advances in biotechnology for enhancing soil fertility 
and nutrient cycling," African Journal of Biological Sciences, vol. 6, no. 6, pp. 5610–5628, 2024.  

[7] D. Soliya and P. Suthar, "A comprehensive review on the advancement of sustainability in the Agro-processing 
industries," Scientific Research Journal of Agriculture and Veterinary Science, vol. 2, no. 1, pp. 16-19, 2024.  

[8] A. Ali et al., "Enhancing nitrogen use efficiency in agriculture by integrating agronomic practices and genetic 
advances," Frontiers in Plant Science, vol. 16, p. 1543714, 2025.  https://doi.org/10.3389/fpls.2025.1543714 

[9] L. Lipper et al., "Climate-smart agriculture for food security," Nature Climate Change, vol. 4, pp. 1068-1072, 2014.  
https://doi.org/10.1038/nclimate2437 

[10] S. A. Al-Otaibi and H. B. Albaroudi, "Prospects and obstacles of digital quality management in Saudi Arabia 
universities. A systematic literature review from the Last Decade," Cogent Business & Management, vol. 10, no. 3, p. 
2256940, 2023.  https://doi.org/10.1080/23311975.2023.2256940 

[11] D. Zhang et al., "Mm-llms: Recent advances in multimodal large language models," arXiv preprint arXiv:2401.13601, 
2024.  

[12] S. M. Patel et al., "Sodium-glucose cotransporter-2 inhibitors and major adverse cardiovascular outcomes: a SMART-
C collaborative meta-analysis," Circulation, vol. 149, no. 23, pp. 1789-1801, 2024.  
https://doi.org/10.1161/CIRCULATIONAHA.124.069568 

[13] A. K. Singh, R. Verma, B. Singh, and S. Singh, "The role of artificial intelligence in agriculture: A comprehensive 
review," Scope, vol. 14, no. 3, pp. 1203–1215, 2024.  

[14] S. Meghwanshi, "Artificial intelligence in agriculture: A review," International Research Journal of Modernization in 
Engineering Technology and Science, vol. 6, no. 3, pp. 4358–4363, 2024.  

[15] L. W. K. Lim, "Implementation of artificial intelligence in aquaculture and fisheries: Deep learning, machine vision, 
big data, internet of things, robots and beyond," Journal of Computational and Cognitive Engineering, vol. 3, no. 2, pp. 
112-118, 2024.  https://doi.org/10.47852/bonviewJCCE3202803 

[16] L. A. Ibrahim, H. Shaghaleh, G. M. El-Kassar, M. Abu-Hashim, E. A. Elsadek, and Y. Alhaj Hamoud, "Aquaponics: A 
sustainable path to food sovereignty and enhanced water use efficiency," Water, vol. 15, no. 24, p. 4310, 2023.  
https://doi.org/10.3390/w15244310 

[17] A. F. Amalia et al., "Artificial intelligence for small hydroponics farms employing fuzzy logic systems and economic 
analysis," Revista Brasileira De Engenharia Agrícola E Ambiental, vol. 27, no. 9, pp. 690-697, 2023.  
https://doi.org/10.1590/1807-1929/agriambi.v27n9p690-697 

[18] O. Joshua, F. Idachaba, and O. Steve-Essi, "Design and Implementation of a Smart Water Monitoring System (IoT) 
Using Arduino Microcontroller," 2022.  

[19] S. Wright, V. Hughes, and C. James, "IoT and AI for smart aquaponics and hydroponics systems," 2022.  
[20] M. A. Haq and M. Y. A. Khan, "Crop water requirements with changing climate in an arid region of Saudi Arabia," 

Sustainability, vol. 14, no. 20, p. 13554, 2022.  https://doi.org/10.3390/su142013554 
[21] M. A. Haq, "Intellligent sustainable agricultural water practice using multi sensor spatiotemporal evolution," 

Environmental Technology, vol. 45, no. 12, pp. 2285-2298, 2024.  https://doi.org/10.1080/09593330.2021.2005151 
[22] M. A. Haq, "Planetscope nanosatellites image classification using machine learning," Computer Systems Science and 

Engineering, vol. 42, no. 3, pp. 1031–1046, 2022.  https://doi.org/10.32604/csse.2022.023221 
[23] A. K. Verma, M. Chandrakant, V. C. John, R. M. Peter, and I. E. John, "Aquaponics as an integrated agri-aquaculture 

system (IAAS): Emerging trends and future prospects," Technological Forecasting and Social Change, vol. 194, p. 
122709, 2023.  https://doi.org/10.1016/j.techfore.2023.122709 

[24] A. Ghaffar et al., "Innovations in aquaponics technology and building sustainable infrastructure for agriculture," 
Indonesian Journal of Agriculture and Environmental Analytics, vol. 3, pp. 121-134, 2024.  

[25] M. S. Mohamed, T. C. Moulin, and H. B. Schiöth, "Sex differences in COVID-19: The role of androgens in disease 
severity and progression," Endocrine, vol. 71, pp. 3-8, 2021.  https://doi.org/10.1007/s12020-020-02536-6 

[26] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E.-H. M. Aggoune, "Internet-of-Things (IoT)-based smart 
agriculture: Toward making the fields talk," IEEE access, vol. 7, pp. 129551-129583, 2019.  
https://doi.org/10.1109/ACCESS.2019.2932609 

[27] I. M. Mehedi, M. S. Hanif, M. Bilal, M. T. Vellingiri, and T. Palaniswamy, "Remote sensing and decision support 
system applications in precision agriculture: Challenges and possibilities," Ieee Access, vol. 12, pp. 44786-44798, 2024.  
https://doi.org/10.1109/ACCESS.2024.3380830 

[28] R. Hossam, A. Heakl, and W. Gomaa, "Precision aquaculture: An integrated computer vision and IoT approach for 
optimized tilapia feeding," arXiv preprint arXiv:2409.08695, 2024.  

[29] R. Weber, F. Müller, and T. Schmidt, "IoT-based monitoring systems for precision agriculture: A review," 
International Journal of Computer Applications, vol. 58, no. 12, pp. 1–9, 2012.  
https://doi.org/10.1108/13527601211247053 

[30] R. Duell, J. Lee, and S. Patel, "Integrating AI and sensor networks for smart crop monitoring," Journal of Agricultural 
Informatics, vol. 5, no. 3, pp. 45–57, 2014.  

https://doi.org/10.1016/j.aiia.2024.04.003
https://doi.org/10.3389/fpls.2025.1543714
https://doi.org/10.1038/nclimate2437
https://doi.org/10.1080/23311975.2023.2256940
https://doi.org/10.1161/CIRCULATIONAHA.124.069568
https://doi.org/10.47852/bonviewJCCE3202803
https://doi.org/10.3390/w15244310
https://doi.org/10.1590/1807-1929/agriambi.v27n9p690-697
https://doi.org/10.3390/su142013554
https://doi.org/10.1080/09593330.2021.2005151
https://doi.org/10.32604/csse.2022.023221
https://doi.org/10.1016/j.techfore.2023.122709
https://doi.org/10.1007/s12020-020-02536-6
https://doi.org/10.1109/ACCESS.2019.2932609
https://doi.org/10.1109/ACCESS.2024.3380830
https://doi.org/10.1108/13527601211247053


1010 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 986-1011, 2026 
DOI: 10.55214/2576-8484.v10i1.11809 
© 2026 by the authors; licensee Learning Gate 

 

[31] S. Habas, "Intelligent systems in hydroponic agriculture: A survey," Procedia Computer Science, vol. 32, pp. 1024–1031, 
2014.  

[32] M. Harbaity, A. Al-Fuqaha, and O. Khalaf, "AIoT in hydroponics: Crop recommendation and nutrient optimization," 
IEEE Access, vol. 8, pp. 203456–203468, 2020.  

[33] M. A. Rahman, N. R. Chakraborty, A. Sufiun, S. K. Banshal, and F. R. Tajnin, "An AIoT-based hydroponic system for 
crop recommendation and nutrient parameter monitorization," Smart Agricultural Technology, vol. 8, p. 100472, 2024.  
https://doi.org/10.1016/j.atech.2024.100472 

[34] M. Anila and O. Daramola, "Applications, technologies, and evaluation methods in smart aquaponics: A systematic 
literature review," Artificial Intelligence Review, vol. 58, no. 1, p. 25, 2024.  

[35] D. Diaz-Delgado, C. Rodriguez, A. Bernuy-Alva, C. Navarro, and A. Inga-Alva, "Optimization of vegetable 
production in hydroculture environments using artificial intelligence: A literature review," Sustainability, vol. 17, no. 
7, p. 3103, 2025.  https://doi.org/10.3390/su17073103 

[36] A. Awofolaju, "Enhancing fish farming through AI and IoT-based systems," Aquaculture and Technology Research, vol. 
7, no. 4, pp. 98-115, 2019.  

[37] M. A. H. b. Zamnuri et al., "Integration of IoT in small-scale aquaponics to enhance efficiency and profitability: A 
systematic review," Animals, vol. 14, no. 17, p. 2555, 2024.  https://doi.org/10.3390/ani14172555 

[38] R. S. Birdawade, S. S. Bhosale, D. S. Khaladkar, S. S. Dhumal, and S. B. Patil, "A review of IoT-enhanced sustainable 
farming: Integrating aquaponics, hydroponics, and poultry for future agriculture," International Journal of Recent 
Advances in Engineering and Technology, vol. 14, no. 1s, pp. 66-81, 2025.  

[39] X. Wang et al., "Remote sensing revolutionizing agriculture: Toward a new frontier," Future Generation Computer 
Systems, p. 107691, 2025.  https://doi.org/10.1016/j.future.2024.107691 

[40] A. Salam, Internet of things in agricultural innovation and security. In Internet of Things for Sustainable Community 
Development: Wireless Communications, Sensing, and Systems. Cham: Springer International Publishing, 2024. 

[41] Ö. Aydin, C. A. Kandemir, U. Kiraç, and F. Dalkiliç, "An artificial intelligence and Internet of things based automated 
irrigation system," arXiv preprint arXiv:2104.04076, 2021.  

[42] D. Dhinakaran, S. Gopalakrishnan, M. Manigandan, and T. Anish, "IoT-Based environmental control System for 
Fish farms with sensor Integration and machine learning decision support," arXiv preprint arXiv:2311.04258, 2023.  

[43] J. H. Naphtali, S. Misra, J. Wejin, A. Agrawal, and J. Oluranti, An intelligent hydroponic farm monitoring system using 
IoT. Data, Engineering and Applications: Select Proceedings of IDEA 2021. Singapore: Springer Nature Singapore, 2022. 

[44] A. Uthman and S. Musa, "AI automation in hydroponics: A study on module-specific implementation," Journal of 
Smart Agriculture, vol. 12, no. 4, pp. 145–158, 2023.  

[45] N. Sadek and D. Shehata, "Internet of Things based smart automated indoor hydroponics and aeroponics greenhouse 
in Egypt," Ain Shams Engineering Journal, vol. 15, no. 2, p. 102341, 2024.  https://doi.org/10.1016/j.asej.2023.102341 

[46] M. S. Dennison, P. S. Kumar, F. Wamyil, M. A. Meji, and T. Ganapathy, "The role of automation and robotics in 
transforming hydroponics and aquaponics to large scale," Discover Sustainability, vol. 6, no. 1, p. 105, 2025.  
https://doi.org/10.1007/s43621-025-00908-4 

[47] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, "IoT elements, layered architectures and 
security issues: A comprehensive survey," Sensors, vol. 18, no. 9, p. 2796, 2018.  

[48] H. Mrabet, S. Belguith, A. Alhomoud, and A. Jemai, "A survey of IoT security based on a layered architecture of 
sensing and data analysis," Sensors, vol. 20, no. 13, p. 3625, 2020.  https://doi.org/10.3390/s20133625 

[49] X. Zhao, Y. Li, H. Wang, and J. Chen, "Design and implementation of environment-aware sensor networks for 
precision agriculture," Sensors, vol. 23, no. 5, p. 2714, 2023.  

[50] L. Zhang, M. Chen, and Y. Liu, "Microcontroller-based embedded systems for smart agriculture: Design and 
applications," IEEE Access, vol. 11, pp. 48215–48228, 2023.  

[51] G. Erasala and J. Yen, "Bluetooth networking: An overview," IEEE Communications Magazine, vol. 40, no. 12, pp. 
107–113, 2002.  

[52] A. Manjeshwar and D. P. Agrawal, "APTEEN: A hybrid protocol for efficient routing and comprehensive 
information retrieval in wireless sensor networks," in Parallel and Distributed Processing Symposium, International (Vol. 
3, pp. 0195b-0195b). IEEE Computer Society, 2002.  

[53] A. Srivastava, R. Kumar, and V. Sharma, "Energy-efficient operation of IoT devices using active, sleep, and deep sleep 
modes," International Journal of Computer Networks & Communications, vol. 10, no. 3, pp. 45–57, 2018.  

[54] C. Del-Valle-Soto, C. Mex-Perera, J. A. Nolazco-Flores, R. Velázquez, and A. Rossa-Sierra, "Wireless sensor network 
energy model and its use in the optimization of routing protocols," Energies, vol. 13, no. 3, p. 728, 2020.  
https://doi.org/10.3390/en13030728 

[55] H. Chung, S. J. Lee, and J. G. Park, "Deep neural network using trainable activation functions," in In 2016 
International Joint Conference on Neural Networks (IJCNN) (pp. 348-352). IEEE, 2016.  

[56] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. Cambridge, MA: MIT Press, 2016. 
[57] J. Terven, D.-M. Cordova-Esparza, J.-A. Romero-González, A. Ramírez-Pedraza, and E. Chávez-Urbiola, "A 

comprehensive survey of loss functions and metrics in deep learning," Artificial Intelligence Review, vol. 58, p. 195, 
2025.  https://doi.org/10.1007/s10462-025-11198-7 

https://doi.org/10.1016/j.atech.2024.100472
https://doi.org/10.3390/su17073103
https://doi.org/10.3390/ani14172555
https://doi.org/10.1016/j.future.2024.107691
https://doi.org/10.1016/j.asej.2023.102341
https://doi.org/10.1007/s43621-025-00908-4
https://doi.org/10.3390/s20133625
https://doi.org/10.3390/en13030728
https://doi.org/10.1007/s10462-025-11198-7


1011 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 10, No. 1: 986-1011, 2026 
DOI: 10.55214/2576-8484.v10i1.11809 
© 2026 by the authors; licensee Learning Gate 

 

[58] Y. Liang and W. Peng, "Minimizing energy consumptions in wireless sensor networks via two-modal transmission," 
ACM SIGCOMM Computer Communication Review, vol. 40, no. 1, pp. 12-18, 2010.  
https://doi.org/10.1145/1672308.1672311 

[59] Espressif Systems, "ESP32 series datasheet: ESP32-WROOM-32 Module. Espressif Systems," 2020. 
https://www.espressif.com/ 

[60] Seeed Studio, YF-S201 water flow sensor specifications. Shenzhen, Guangdong, China: Seeed Studio, 2018. 
[61] DFRobot, "Analog pH sensor / meter Kit V2 (SEN0169) Datasheet. DFRobot," 2017. https://wiki.dfrobot.com/ 
[62] Maxim Integrated, DS18B20 programmable resolution 1-wire digital thermometer. San Jose, CA, USA: Maxim 

Integrated, 2015. 
[63] Insight, ISST105 turbidity sensor datasheet. USA: Insight, 2019. 
[64] Dyp Sensors, DP5200 water level sensor specifications. India: Dyp Sensors, 2018. 
[65] X. Zhang et al., "Accessibility within open educational resources and practices for disabled learners: A systematic 

literature review," Smart Learning Environments, vol. 7, no. 1, p. Article 1, 2020.  

 

 

https://doi.org/10.1145/1672308.1672311
https://www.espressif.com/
https://wiki.dfrobot.com/

