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Abstract: Agriculture is the foundation of food production worldwide, and as populations continue to
grow, agricultural output struggles to keep up, leading to increasing food insecurity. Al is increasingly
recognized as a powerful tool for making farming more efficient and sustainable. This paper presents the
architectural design of an Al-enabled integrated farming system that combines automated fertigation,
hydroponics, and aquaculture. The framework incorporates sensors, actuators, and microcontrollers for
monitoring and controlling resources, utilizing Al algorithms to provide predictive analytics, optimize
resource use, and support real-time decision-making. Experiments demonstrate improvements in
productivity and the sustainable use of water and nutrients. Real-time data from these sensors can be
remotely controlled using a microcontroller, which receives and stores it in the cloud. Notifications on
mobile devices or a web dashboard alert farmers when parameters exceed predetermined thresholds,
facilitating emergency management of water pollution or nutrient deficiencies. The proposed system
offers a scalable approach to enhancing food security, advancing smart agriculture, and promoting
sustainable rural development.

Keywords: Aquaculture, Artificial intelligence, Automated fertigation, Food security, Hydroponics, Integrated farming
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1. Introduction

Agriculture is crucial for the economic stability and food security of every country [17]. However,
population growth exceeds food production increases, raising concerns about global food security [27.
As demand for traditional farming practices declines, there is a need for innovative, technology-driven
methods to improve yields, efficiency, and sustainability to meet the increasing demand for agricultural
products [3, 47. It is now estimated that food production must increase by 60-110% to feed a projected
population of 9-10 billion by 2050 [57. Addressing this challenge requires judicious use of land, water,
tertilizers, and energy, with practices that protect the environment.

Numerous technological advances in genetic modification, irrigation, and post-harvest treatment
have contributed to increased productivity [6, 7. Recently, precision technologies and climate-smart
agriculture, supported by artificial intelligence (AI), big data, and the Internet of Things (IoT), have
been proposed as strategies to enhance resilience against climate change and promote sustainable food
systems [8, 97]. FFor instance, recent publications encompass applications ranging from predicting water
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demand in arid areas [10] to multi-sensor monitoring for sustainable irrigation [117] and nanosatellite-
based crop classification [127]. These developments reflect the worldwide trend toward the use of
artificial intelligence in agriculture.

Take Al-driven technologies, for example, which are transforming agriculture through predictive
analytics, decision support systems, and automation [13, 147]. Applications include crop monitoring,
aquaculture, and hydroponics, with promising results for increased yields and reduced waste [15-17].
However, few works are complete and focus on applications such as water quality monitoring [187] or
climate control systems for hydroponics, with corrected grammar and spelling [197]. Currently, there
are few efforts combining fertigation, hydroponics, and aquaculture into an integrated, Al-enabled
architecture supporting commercial-scale farm operations.

This study addresses a gap by proposing an Al-enabled integrated farming system based on
automated fertigation, hydroponics, and aquaculture. The system incorporates sensors, actuators, IoT
communication protocols, and machine learning algorithms for comprehensive monitoring, prediction,
and resource optimization in real-time. Unlike current systems, this framework demonstrates the
potential of sensor fusion and Al operations across various farming sectors. It aims not only for
increased productivity but also for sustainable resource management, aligning with global strategies for
tood security and climate resilience.

2. Related Works

The need to increase agricultural output faces rising stress from climate change, resource depletion,
and population growth. Global studies indicate that food production must increase by 60—110% to meet
the demands of 9—10 billion people by 2030-2050 ['1, 97.

The declining availability of freshwater, increased evapotranspiration due to higher temperatures,
and variable rainfall patterns have intensified stress on traditional farming methods, especially in arid
and semi-arid regions. For example, climate change is leading to an increased need for irrigation in
Saudi Arabia [207]. Intelligent and smart agricultural practices are essential for the sustainable
management of water resources. This is particularly true for practices based on multi-sensor
spatiotemporal analyses, as discussed by Haq [217], which optimize and stabilize agricultural output
under limited water availability. These studies emphasize the need to replace traditional irrigation
methods with advanced, adaptive practices to manage water resources effectively for irrigation.

Simultaneously, machine learning and satellite imaging technology in agricultural monitoring have
proven fundamental in addressing the relationships between macroclimate and crops. As Haq [22]
demonstrates, the classification of Planet Scope nanosatellite images enables real-time monitoring and
classification of crops, even as the climate changes. This is part of a broader initiative to apply Al, IoT,
and predictive analytics as climate-smart agricultural tools [23, 247]. Collectively, these works
emphasize that climate change presents not only environmental challenges but also technological ones,
requiring sophisticated solutions to address water scarcity, improve nutrient use efficiency, and stabilize
yields amid unpredictable weather conditions.

Therefore, the work of automation and IoT in efficient irrigation, soil health monitoring, and
optimized pest management [25, 267 demonstrates that these technologies, alongside the realities of
climate change, are standards that are non-negotiable. This context underpins Al-powered integrated
tarming solutions that combine hydroponic farming, aquaculture, and fertigation to create climate-smart
systems.

The automation process in agriculture, along with precision farming that incorporates IoT and
decision-making and predictive systems forming the core of communication technologies, is already
transforming the sector significantly. In a broader sense, IoT technologies used for efficient irrigation
management, soil sensing, and pest elimination have been integrated to improve yields and reduce
wastage [25, 26 . | acknowledge that in automation and systems design, the nuts and bolts of reality
seem unfeasible due to the resources required to develop the subsystems. Automation often appears to
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be the simpler and more effective approach. However, the groundwork appears to be in place for Al to
enter agriculture and bring about further transformation.

Current applications of artificial intelligence in tool-driven agricultural operations utilize machine
learning and deep learning methods for crop health monitoring, yield prediction, forecasting, and
disease diagnosis [19, 277]. In aquaculture, computer vision and artificial intelligence have also been
applied [[16, 287, along with several IoT applications, for monitoring water quality and optimizing fish
teeding [29-327]. Also, the application of AloT in hydroponics states, “For crop recommendation and
nutrient monitoring, the proposed method is more effective and best suited for development with
minimization of human error” [17, 337]. The authors noted that when used properly, this technology can
enhance all four dimensions of food security, including supply, availability, access, and stability for
consumption [ 34, 357.

Both hydroponics and aquaculture are sustainable individually, but combined, they form an
integrated aquaponic system, creating a closed-loop that uses fish effluents as plant fertilizer, reducing
chemical inputs [15, 367]. The application of Al-based optimization systems is well-established;
however, few studies trace the entire value chain to where Al integration occurs at the production stage
[37, 887]. For instance, although some real-time systems detect nutrients [187 and water quality
management or climate control systems exist, very few systems are designed to integrate these
subsystems into a higher-level system.

The integration of IoT has been a focus of recent studies, aiming to enhance farming efficiency and
sustainability. Zamnuri et al. [377] highlighted the current state of small-scale aquaponics and the
potential for IoT technology in monitoring and controlling water systems, oxidative, reductive, and
mineral nutrients. However, this potential has yet to be realized on a larger scale. In the more applicable
direction, Birdawade et al. (887 took a step forward by integrating aquaponics, hydroponics, and
poultry systems with an IoT monitoring system, offering an IoT-based solution for monitoring these
combined farms. This approach provides a more comprehensive, though still evaluative, method. While
these efforts mark progress, they remain the most informal and vague forms of automation systems
intended to be powered by Al

The following discusses the application of sensing and digital intelligence techniques in
confinement, aiming to fully incorporate artificial intelligence, including intelligent agricultural
management. Regarding Al prediction, Wang et al. [897] forecast that large-scale Al deployment in
digital mapping, crops, and water management will significantly transform agricultural production
systems. Additionally, recent advances in computer vision and the Internet of Things have improved
teed optimization in aquaculture [287, stimulating a paradigm shift from reactive to predictive feeding
in aquaculture. These works aimed at adopting adaptive control in anticipation of artificial intelligence
(AI) applications. However, the overall paradigm of a multi-system framework integrating hydroponic,
aquaculture, and fertigation systems into a unified, holistic concept remains absent.

Furthermore, the integration of operating systems across cross-domain [oT, Al, and wireless sensor
networks in smart farming [39, 407 proves to be a more efficient and sustainable approach, although it
remains in the experimental stage. Hydroponics, aquaculture, and fertigation systems also require
innovative, efficient solutions for scaling up and achieving interoperability.

Based on the identified literature gap, the integration of systems with automation and advanced Al
remains unresolved. While recent research documents hydroponics, aquaculture, and irrigation
management within their respective domains, publications that integrate these areas into a coherent
framework are scarce. The literature review results on system design, Al, automation, scalability,
nutrient flexibility, recycling, and overall system design are presented in Tables 1 and 2. These tables
clarify how the proposed system advances existing technology in the field.
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Table 1.

Comparative Analysis of System Architectures (Integration, Al, Nutrient recycling, Automation).

989

Study Focus area Integration(Hydroponics/ | Nutrient Al / Automation
Aquaculture recycling
Fertigation)

Proposed system | Integrated aquaponics— | Full integration | Closed-loop Al-driven DSS, LSTM
(this work) hydroponics— (hydroponics + aquaculture | (aquaponic prediction, adaptive
fertigation + fertigation) nutrient reuse) control
Aydin et al. [417 | Smart Partial (irrigation-focused) | Limited / none ML for soil moisture;

irrigation/hydroponics scheduling

Dhinakaran et al. | Aquaculture Aquaculture-only (isolated) | None ML for fish  health,

[42] monitoring automated feeding

Naphtali et al. | Hydroponics Hydroponics-only None IoT automation; rule-based

[43] control

Uthman and | Hydroponics Hydroponics-only None Al automation, but no

Musa [44] cross-module integration

Sadek and | Greenhouse control Greenhouse-only None IoT-based threshold

Shehata [457] automation

Anila and | Smart aquaponics | Focus on aquaponics | Partial (reviewed | Surveyed Al/IoT

Daramola [347] (systematic review) (review) systems) approaches (mixed
automation)

Diaz-Delgado et | Hydroculture Hydroponics/hydroculture | Nutrient Al models for yield &

al. [357] optimisation optimisation nutrient optimisation

(hydroculture)

Dennison et al. | Automation & robotics | Hydroponics + aquaponics | Medium (depends | Robotics + high
[46] (robotics focus) on automation
implementation)
Zamnuri et al. | IToT in  small-scale | Small-scale aquaponics Partial IoT monitoring empbhasis
[37] aquaponics (review) (limited AI)
Ghaftar et al. | Aquaponics tech & | Aquaponics infra & design Aquaponics-based | Conceptual
[24] infrastructure recycling [oT/automation;
infrastructure focus
Birdawade et al. | [oT-enhanced  multi- | Aquaponics + hydroponics | Reuse  pathways | ol + Al integration
[388] system farming | + poultry discussed (review/experimental)
(review) (poultry/fish
waste)
Rahman et al. | AloT hydroponics Hydroponics (AloT) Limited/managed | AloT crop
[383] in hydroponics recommendation &
nutrient monitoring
Wang et al. [397 | Remote sensing + Al | System-level = monitoring | Not system- | AI  + remote sensing
for agriculture (remote sensing) specific analytics (scalable
monitoring)
Verma et al. | IAAS: Aquaponics as | Integrated agri-aquaculture | Emphasized Case studies;

[23] agri-aquaculture (TIAAS) nutrient reuse ML/automation noted

Hossam et al. | Precision aquaculture | Aquaculture-only Not addressed Computer vision + IoT for

[28] (CV + IoT) feeding optimisation

Haq and Khan | Crop water | Agriculture (irrigation) Indirect (water | Simulation & scheduling

[20] requirements under optimisation) (climate data integration)
climate change

Haq [21] Intelligent sustainable | Agriculture water systems | Limited nutrient | Multi-sensor Al &
water practice (multi-sensor) focus (mainly | spatiotemporal modelling

water)

Haq [22] Nanosatellite ML for | Remote sensing & ML Not nutrient- | ML classification  from

classification specific Planetscope nanosat data
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Table 2.

Comparative Analysis of System Architectures (Scalability, Flexibility, Climate change consideration & Sustainability).

Study Scalability Flexibility Climate change | Sustainability

consideration

Proposed system High — | High —  AI- | Explicitly  addressed | High —  closed-loop
cloud/modular adaptive multi- | (climate-resilient nutrient & water reuse
design (pilot — | module control design)
cloud scale)

Aydin et al. [417] Low Medium Not explicitly | Moderate (water-

addressed efficiency focused)

Dhinakaran et al. [427] Medium Medium Not explicitly | Moderate  (aquaculture

addressed gains)

Naphtali et al. [487] Low Low Not addressed Low

Uthman and Musa [44] Medium Medium Not addressed Moderate

Sadek and Shehata [457] Low—Medium Low Not addressed Moderate

Anila and Daramola [347] | N/A (review) N/A (review | Not explicit (survey) Moderate (identifies

summarizes potential)
diversity)

Diaz-Delgado et al. [357] | High (commercial | High Indirectly High (nutrient & yield
hydroculture (optimisation aids | optimisation)
potential) resilience)

Dennison et al. [46] Medium—High High Not explicit Medium
(robotics can scale
but is costly)

Zamnuri et al. [37] Low (small-scale | Medium Not explicit Moderate
tocus)

Ghaftar et al. [247] Medium High Not explicit High (infrastructure for

sustainability)

Birdawade et al. [387] Medium High Not explicit High (integrated waste
(experimental) reuse)

Rahman et al. [337] Medium (modular | High Indirectly  (resource | High
hydroponics) optimisation)

Wang et al. [39] High High Explicitly  addressed | High
(satellite/drone (remote sensing for
scaling) climate resilience)

Verma et al. [237] Medium Medium Not explicit High  (IAAS  nutrient

reuse)

Hossam et al. [28] Low—Medium Medium Not explicit Moderate
(farm-level)

Haq and Khan [207] Medium (arid | Medium Explicitly  addressed | High (water conservation)
regions focus) (climate water needs)

Haq [21] Medium—High High Explicitly  addressed | High (intelligent
(multi-sensor, (Al-driven climate | sustainable practice)
scalable) water management)

Haq [22] High (satellite | High Explicitly  addressed | Moderate—High (data-
ML scaling) (satellite climate data) | driven sustainability)

Through the gap analysis, some gaps in the literature have been identified. Most existing
frameworks are either domain-specific or related to hydroponics [43, 447 and aquaculture [28, 467 or
attempt to position the objective as irrigation scheduling [417. Even studies focusing on integration
[23, 3887 do not consider fully automated, adaptive mechanisms capable of real-time resource
configuration across multiple subsystems. Additionally, no frameworks include nutrient recycling and
closed-loop resource use, which are essential for sustainability at scale.

The systems considered are also not sufficiently flexible. Many use static thresholds or rules of
thumb [84, 457, which poorly handle dynamic environmental changes. However, positive trends in
AloT are evident 837 and robotics [467]. These are mostly idealistic or small-scale solutions, for which
scalability and adaptiveness are predicted to rely on cloud functions, and for which there is no evidence.
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However, the proposed system overcomes these limitations by integrating hydroponics,
aquaculture, and fertigation into a single system. Its predictive modeling, combined with Al, IoT
connectivity, and cloud scalability, offers resource optimization, closed-loop nutrient recycling, and real-
time adaptive performance. This positions the model to promote sustainable, energy-efficient agriculture
at scale, addressing food security challenges effectively.

3. Design Concept

FARM DATA ACTUATION

Y B
W *. F’LATFORM B

Sensor

. 01010
ﬁ 2 L f 10111 ||/
§5&\\'me
- | 45

DECISION

Implementation

S

Precision Feedback
Figure 1.
Conceptual Architecture.

As illustrated in Figure 1, the system was designed to manage farms using technology. It functions
through a continuous feedback loop connecting the farm environment, an IoT-based platform, data
processing, Al-driven decision-making, and automated controls. This integration allows real-time
resource monitoring, forecasting, and adaptive management, ultimately enhancing farm productivity.

The farm component includes crops, aquaculture, poultry, and animal husbandry. Effective
management requires monitoring soil moisture, water quality, temperature, humidity, and nutrient
levels to ensure optimal conditions for plant growth. These parameters are critical for sustaining plant
growth and ensuring animal health and productivity.

The platform relies on an IoT framework that connects the farm to the Al system. Smart sensors
continuously measure environmental parameters, including pH, turbidity, temperature, oxygen levels,
and water levels. The software enables seamless communication between users and devices, and the
wireless transmission of sensor data facilitates real-time remote monitoring and quick responses to farm
conditions.

Cloud-based storage and data processing systems streamline information management. Farm
condition predictions and process automation become possible as data is structured, increasing the
accuracy of farm management decisions along with control and autonomous process management.

The system is anchored by an Al decision support system (DSS). It intelligently predicts using
artificial neural networks, machine learning, and deep learning, enabling resource preservation while
meeting system targets to optimize responsiveness to surrounding frictions.

Automated actuation with Al-driven predictive accuracy is achieved through smart valves and
motor systems. IFor example, the precision of hydroponic and aquaponic systems in oxygenating and
delivering nutrients is matched by greenhouse systems that control humidity and temperature within
ideal levels.
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The feedback precision loop determines whether the expected results have been achieved from the
actions taken. This self-correcting system allows farm practices to be continuously modified and
improved. Sustainability and productivity are therefore guaranteed over time.

4. Farming System Overview

The farming system aims to integrate hydroponics, aquaponics, and fertigation, combining all three
into a single, efficient system. The nutrient balance subsystem, serving as the system's core, nourishes
all three subsystems holistically, distributing physiologically vital components based on real-time
sensor data and health parameters for the arboretum and aquaculture. The module utilizes automated
valves and pipelines to regulate the flow of real-time physiological vital signs.

Data Anal}t}cs
and Prediction
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I
= | } ! :
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Figure 2.
Integrated Farming System Architecture.

The system’s aquaponics module combines fish farming and hydroponics. Water is filtered and recirculated to
plants that naturally digest fish waste. Water conservation is achieved through this closed-loop system,
eliminating chemical fertilizers. Water quality, oxygen saturation, pH, and turbidity are continuously monitored
to ensure optimal conditions for fish and plants.

The plants are grown in hydroponic units (A and B) that are soil-less and nourished by strategically
controlled automated systems. These systems operate as modules that induce oxygenic and anaerobic
layers in super-saturated solutions, inactivating water, and are hydroponically pre-bioenergetically
assisted with actualized aerobic waters. Hydroponic B covers an entire greenhouse with a faceted
lozenge configuration, providing optimal conditions and nurturing harvest frequencies.

The system is managed by an advanced communication network that aggregates sensor data and
relays it to a microcontroller. The microcontroller performs data processing and controls valves, pumps,
and climate systems to make appropriate adjustments.

Al-driven analytics predict trends and streamline operations on the cloud server where data is
stored. Users can monitor and control the system via mobile devices, enabling real-time updates and
flexible management. They are provided with the necessary tools to manage the system, all within a

single app.
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The cloud system architecture integrates the sensor, network, service, and application layers [47,
487. Each layer focuses on a specific function while interacting with others, enhancing the system's
effectiveness and reliability in farming applications.

1. The sensor layer monitors parameters such as water, oxygen, and temperature in real-time. The
system includes physical sensing devices like water quality sensors, nutrient detectors, oxygen
monitors, and temperature sensors. The aquaponics, hydroponics, and fertigation subsystems
provide the data necessary to monitor these biological and environmental parameters.

2. The network layer enables the transmission of signals captured by sensors to the control system
using various communication protocols such as LoORaWAN or Wi-I'i. It acts as an intermediary
between the sensor and application layers, facilitating bidirectional communication. Lower-level
sensors connect to higher processing units, ensuring efficient data flow.

3. The Service Layer captures actionable intelligence by transforming raw data, identifying
anomalies, optimizing nutrient uptake, and predicting harvests. Microcontrollers and the cloud
process data streams in parallel. Clouds handle sophisticated data storage, analysis, and artificial
intelligence, while edge computing facilitates instantaneous information flow even in regions
with subpar infrastructure.

4. The Application Layer is the layer where customers, end users, operators, and farmers engage
most with the system using user-friendly tools on mobile or desktop interfaces. Users can
visualize system data and are provided with interfaces that display crop health, aquaculture
performance, and overall system status. They are empowered with remote access via mobile and
desktop platforms, enabling them to initiate prompt, correct actions and develop strategies.

Inter-layer interactions are dynamic and circular. For example, aquaponics sensors measuring pH
values send data via the network layer to the service layer. The microcontroller processes this data and,
if a deviation from the norm is detected, sends an actuator signal back through the network layer to
adjust nutrient and oxygen levels. Simultaneously, this data is cloud-logged and made available on the
application layer to the farmer, ensuring transparency and traceability. This coordinated multi-layer
approach enhances precision, efficiency, resource conservation, and sustainability in the farming system.

4.1. Sensor Layer

The design at this layer involves selecting sensors that are primarily dependent on the environment
[497]. These environments, as shown in Figure 3, are categorized into three groups: underwater,
atmospheric, and soil. The sensors in each environment monitor conditions and control actuators to
perform specific tasks that support sustainable agriculture. Table 2 details each of these sensors. The
microcontroller processes the data and manages the functions of various components within an
embedded system. Its two main functions are to receive data from sensors and control actuators 507 to
send sensor readings to the cloud and users, as well as to receive commands from remote locations. The
device selection depends on its flexibility and power consumption.

An open-source firmware and development board designed for Internet of Things applications was
selected for this study. The firmware operates on an ESP8266 chip, which features a 82-bit Tensilica
processor, standard digital peripheral interfaces, antenna switches, RF balun, power amplifier, low-noise
receive amplifier, filters, and power management modules. The processor employs 32-bit Reduced
Instruction Set Computer (RISC) technology, offering low power consumption and a maximum clock
speed of 160 MHz. The system includes various sensors, such as crop sensors, underwater sensors, and
atmospheric sensors. Sensors are devices capable of detecting and reporting environmental changes,
which may be chemical or physical in nature.
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Design Component.

The device comprises three major units: sensing, processing, and communication. The sensing unit
includes a sensor and an analog-to-digital converter. Multiple sensors can be combined to create a
smarter device. The analog signal generated by the sensor, which reflects environmental changes, is
converted into a digital signal by the converter and then fed into the processing unit. The processing
unit performs computations on the data and can store or transmit it to remote storage via the
communication unit. The communication unit connects the node to the network layer. The sensor node
can switch among four modes depending on the current task: transmitting, receiving, idle, and sleep.

Table 3.

Underwater Sensors.

Sensor Model Function Measurement Range / Units

Type

Temperature | DS18B20 | Measures water temperature to detect unusual rises affecting | =55 °C to +125 °C, 0.5 °C
aquatic and plant health. accuracy

Water Level | DP5200 | Detects the water amount within the container for irrigation | 0—5 m (typical), output in cm or
and aquaponic balance. mm

Turbidity ISST105 | Measures light scattering by suspended solids to estimate | 0-1000 NTU (Nephelometric
water particle contamination. Turbidity Units)

pH SEN0169 | Determines water acidity or alkalinity to maintain balance | 0—14 pH units, £0.1-0.2 accuracy
for fish and plants.

Water Flow | YFS201 Monitors the flow rate of water through pipes to ensure | 1-30 L/min (litres per minute)
proper circulation and distribution.

All underwater sensors underwent precise calibration before deployment to ensure accuracy and
reliability. The DS18B20 thermometer was verified against a well-known mercury thermometer in
regulated prime temperature baths at 20°C, 25°C, and 30°C. The DP5200 water level sensor was
calibrated in an experimental system consisting of a graduated cylinder, where water levels were
gradually increased, and sensor outputs were compared to actual measured levels. To account for

Edelweiss Applied Science and Technology
ISSN: 2576-8484

Vol. 10, No. I: 986-1011, 2026

DOLI: 10.55214/2576-8484.v1011.11809

© 2026 by the authors; licensee Learning Gate



995

scattering caused by suspended solids, the ISST105 turbidity sensor was calibrated using Formazin
turbidity standards at 0, 20, and 100 NTU. To ensure accurate detection of changes in acidity and
alkalinity, the SEN0169 pH sensor was calibrated against three buffered solutions with pH values of 4.0,
7.0, and 10.0. Finally, a timed volumetric assessment was performed to calibrate the water flow sensor,
comparing it with the accuracy of a calibrated flow system based on YF'S201. To minimize drift errors,
each calibration was repeated multiple times, and the results were entered into the control system
database.

4.2. Network layer

In this proposed system, various sensor data are transmitted via different communication
technologies such as Bluetooth [517, Zigbee, and LoRa to the internet. Due to power limitations in
WSN, energy-efficient routing protocols are crucial. Constrained power in WSN can be effectively
managed using APTEEN [527 while providing acceptable performance; our system includes a wireless
module connectable to the cloud via TCP/IP. The module operates in three modes, active, sleep, and
deep sleep, to conserve battery life [537].

To analyze the effectiveness of these modes, the average power consumption per reporting interval
T was defined as:

Itxtext Irxtrxt Iproctproct Isitst
Iavg = I ’ Pavg =V Iavg [54]
Payg

Where Ity , Ly, Iproc,Is are the currents in transmit, receive, processing, and sleep modes, and
texr trx s tproc, s their respective durations.

The cloud infrastructure is a system of servers connected to the internet, providing a link between
microcontrollers and end-user mobile devices. This component stores historical sensor data to develop a
software driver for real-time monitoring and control. MATLAB-based computations are supported by
ThingSpeak, an open-source platform for numerical analysis. For inter-data communication, RESTful
APIs and Message Queuing Telemetry Transport (MQTT) are used. While REST APIs operate on a
request-response paradigm, MQTT employs a lightweight publish-subscribe model over HTTP. Due to
bandwidth and power constraints, MQTT is used for real-time data transmission, whereas REST is
utilized for data access.

In summary, there are additional reasons why MQTT is preferred over REST, including lower
latency. REST remains adequate for periodic reporting and archival purposes. Both dummy methods
utilize keys as a form of authentication to safeguard information. The Decision Support System (DSS)
located at this network layer is responsible for collecting environmental data to improve farming
practices. Al service layer algorithms excel at analyzing diverse sets of agricultural information to assist
tarmers. These algorithms facilitate monitoring of generation unit functioning, forecasting, pattern
recognition, anomaly detection, and optimization of control strategies. Predictive analytics, for example,
aids in feeding management and proactive intervention in hydroponic nutrient control. Artificial neural
networks (ANNSs) are used to construct the system, as they provide optimal predictive capabilities.
Neural networks consist of multiple interconnected layers and can perform both regression and
classification tasks after training. Non-linearity is incorporated into these systems through activation
functions, which are essential components that model complex correlations within the data [55, 567. It
has been seen that the three widely used activation functions are:

0(x) = —— (sigmoid)

tanh(x) = el

eX+e™X

(Hyperbolic Tangent)
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f{x) = max (0,x). (ReLU)

For temporal dependencies in sensor data, such as changes over time in water quality, Long Short-
Term Memory (LSTM) networks were employed. LSTM addresses issues of vanishing gradients and
can capture long-term dependencies that traditional RNNs struggle with. Compared with Convolutional
Deep LSTM (CDLSTM), one of the most effective methods for video recognition, LSTM is sufficiently
complex to characterize sequential aquaponics sensor data without the computationally expensive
processing time. Although Synthetic Minority Oversampling with Deep Neural Networks (SMOTE-
DNN) is a popular technique for imbalanced datasets, LSTM was chosen because of the greater
emphasis on the time-series nature of water quality and nutrient concentrations over the need for a
well-balanced maintenance class.

Figure 4 shows the structure of the LSTM network. The input gate, as the name suggests, controls
the incoming data x; to the model using the sigmoid function, and introduces weights using the tanh
function. The forget gate f; specifies which value from the previous cell state C;_; to forget, depending
on the sigmoid evaluation of the value of h,_jand x;. Before the multiplication with the output gate
oto_t is performed, the multivector is somehow scaled through a tanh-function that also chooses the
output values as a sigmoid function.

{ht—l Ihf 1hr+1
> T C\‘-
c +
-1 i

> TP
TH 0

By | [TH] ¢ .

Xe—1 X¢ Xpg1

Figure 4.
LSTM Hidden Layer Architecture.

Hyperparameter tuning is a method used to optimize model parameters. In this case,
hyperparameters included the learning rate (0.001 to 0.01), epochs (50 to 200), batch size, and dropout
rates (0.2 to 0.5). To determine the optimal values, grid search and cross-validation methods were
employed. The model was evaluated using multiple prediction accuracy metrics, including Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2). Sensor calibration is
essential to improve accuracy, especially underwater, where measurements can be affected by turbidity
and biofouling.

HNOS3 (38 hydrochloric) solution was used to calibrate the pH, and solutions saturated with oxygen and
lacking oxygen were used to calibrate the dissolved oxygen sensors at two points. These calibration
procedures occurred randomly and were reinforced by an anomaly detection module that facilitated
software filtering of erroneous data.

Model evaluation was carried out using standard performance metrics. The Root Mean Square
Error (RMSE) measures the square root of the average squared differences between predicted (¥;) and
actual (y;) values.

RMSE = (LS00 - 907 [577
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The Mean Absolute Error (MAE) calculates the average magnitude of errors without considering
their direction:

1 A
MAE= 131y - 9] [57]

The Coeflicient of Determination (R2R"2) evaluates how well the model explains variance in the
observed data:

2 _ L - 90)?
RE=1- ooy BT
where y; is the observed value, §; the predicted value, § the mean of observed values, and n the number
of observations.

Data reliability and fault tolerance mechanisms are specifically implemented in the network layer to
ensure resiliency, which is the network's ability to recover from faults. Since sensor nodes are vulnerable
to packet loss and energy depletion, one solution is to implement sensor redundancy through paired
sensors and voting algorithms to filter out erroneous readings. MQTT's Quality of Service (QoS) levels
are used to guarantee message delivery: at-least-once delivery (QoS 1) for important bathroom control
commands and exactly-once delivery (QoS 2) for critical farm control commands. This approach reduces
downtime and maintains stable farm operations even after communication disruptions.

Finally, edge computing and analytics are integrated with the cloud. The LSTM models were
reduced to a lightweight version and deployed on microcontrollers (ESP32), enabling local anomaly
detection when thresholds, such as low dissolved oxygen, are exceeded. This approach reduces reliance
on continuous internet connectivity, with responses triggered directly at the farm level. Edge-cloud
collaboration combines rapid local decision-making with a robust cloud analysis engine, providing high
reliability and scalability benefits for smart aquaponics and hydroponic solutions.

However, this approach offers several advantages, but some challenges must be addressed when
scaling the system for commercialization. Deploying a large number of sensors can lead to network
congestion and latency delays. Additionally, high sampling frequencies complicate sensing tasks,
especially with limited sensors. Power management becomes more difficult in both scenarios, as sleep
modes lose effectiveness when synchronizing thousands of nodes organized as a distributed farm. While
cloud infrastructure can easily scale data storage, operating at scale in production is costly and may
cause bottlenecks if data aggregation processes are inefficient. Multisite scaling introduces further
security concerns, requiring robust authentication, encryption, and fault-tolerant routing schemes.
Addressing these challenges is essential to transition from pilot projects to fully commercialized smart
farming systems.

4.8. Application layer

Agricultural processes generate vast amounts of data, which can be harnessed and processed to gain
insights for making effective decisions that promote optimal crop or animal growth. Harnessing and
processing require specific technologies. Traditionally, farmers manage their farms through visual
inspection of crop and livestock growth, making decisions and taking actions for treatment. This
method largely depends on field experience and the information perceived through farmers' eyes.
Technological intervention has enhanced farm management. This layer helps farmers access
information about their farm's status. It provides data visualization in a user-friendly manner, as well as
the actions necessary for farm status optimization, such as fertigation, irrigation, and pest control,
among others.

5. Experimental Results
The fish pond, measuring 15 by 7 inches, is depicted in Figure 5. Key elements of this system
include an aquaculture setup with sensors, a microcontroller unit, cloud infrastructure, and mobile
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applications. The use of [oT technology enhances efficiency and sustainability in crop cultivation and
aquaculture. The microcontroller collects real-time data from sensors in aquaculture and greenhouse
environments. These sensors monitor pH, temperature, dissolved oxygen, and various nutrient levels in
water. The data is analyzed and transferred to the cloud for storage and further analysis, ensuring
environmental conditions remain suitable for plant and aquatic life.

Aquaculture Setup

Microcontroller Setup

. —————————

Sensor Field Setup

Figure 5.
IoT-Based Experimental Setup.

A 24-hour period in Figure 6 shows that temperatures reach their highest point of 33°C at noon and
the lowest point of 21°C at 6:28 AM. During the day, solar energy heats the water, while at night, heat
is lost to the cooler atmosphere. Based on this pattern, a maximum temperature of 26°C was deemed
suitable for the aquatic ecosystem. The system successfully maintained the pond's temperature at the
ideal 26°C for 92% of the 24-hour period.

At noon, the temperature reached its highest point of 33°C; during the low temperatures, it dropped
to 21°C at 6 a.m. The average deviation from the threshold temperature is 1.5°C, and Figure 5 displays
the temporal changes over time. A t-test showed that the temperature regulation system was
significantly more stable than conventional methods (p < 0.05). The results were statistically
significant.
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Figure 6.

Temperature Data for one Month.

In Figure 7, during the initial three weeks, the soil pH shifted from slightly acidic (around 6.7) to
alkaline (around 8.5). Around Day 22, it sharply declined, then stabilized at approximately 7.2-7.4,
indicating a new equilibrium was effectively established.
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Figure 7.
Soil pH Values from the Sensor Field for one month.

Thus, the system proved to be a pH- and nutrient-balanced soil, with a relatively narrow pH range suitable
for most crops, spanning from 6.2 to 7.1. This was achieved through a controlled, nutrient-rich pond water supply
to the soil. Additionally, statistical analysis indicates a strong correlation between crop yield and stable pH levels
(r = 0.85), further confirming that the system effectively maintains a soil environment conducive to crop growth.
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[oT-Based Experimental Setup Cloud-based Data display (a) Fish Pond pH (b) Fish Pond Turbidity (c) Atmosphere

Temperature (d) Fish Pond Dissolved Oxygen.
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The IoT-based experimental setup enabled real-time monitoring of crucial environmental
conditions within the Al-powered integrated farming system, as shown in Figure 8. The pH of water in
Field 1 was recorded, displaying sporadic fluctuations while remaining within a safe, stable range, which
benefits plant and water life. Overall system efficiency was significantly improved by this stability.
Additionally, the correlation between consistent pH levels and higher crop yields indicates the system's
positive impact on agricultural productivity and sustainability.

Field 2 displays a chart of water turbidity fluctuations throughout the day, caused by biological
activity and filtration. By controlling turbidity, the system prevents sediment buildup and nutrient
depletion. The Al system effectively maintains clear water, improving water quality for fish and plants.

Temperature readings are displayed in Field 3. The charts indicated temperature changes, with the
highest values at midday. Artificial intelligence regulated these variations, keeping water temperature
below optimal levels for fish and plants. Automated climate control maintained the health of the
integrated farm by ensuring stable conditions.

Dissolved oxygen levels are indicated by the chart in Field 4, illustrating natural variation due to
aeration and photosynthesis. The system automatically adjusts oxygenation to prevent low oxygen
levels, ensuring it does not harm aquatic species. These fluctuations align with predetermined patterns,
demonstrating the system's ability to maintain high water quality and promote biological productivity.

Field 5 displays a chart illustrating the effective operation of irrigation and recirculation processes,
showing controlled variations. Regular adjustments verify the water distribution's effectiveness,
reducing waste and ensuring adequate hydration for plants. This supports sustainable practices through
efficient water use, leading to lower overall consumption and improved resource management.

The proposed system not only enhances farm operations but also provides useful analytics tools to
assist farmers in making better decisions. It offers descriptive analytics, diagnostic analytics to explain
the causes of various outcomes, and predictive analytics for future trends. Additionally, predictive
analytics provides specific guidance on improving farm performance. These features help increase food
production and promote sustainable farming.

Additionally, the proposed system mitigates the environmental and economic consequences of
traditional farming. Soil is no longer necessary in hydroponics, as it prevents soil erosion and nutrient
runoff, which are common sources of pollution. By preserving the soil, hydroponics conserves both
water and land. Sustainable practices include improved water quality, better resource utilization, and the
efficient recycling of nutrients within a closed-loop system.

Fish waste can accumulate in water in traditional aquaculture, causing issues like excessive algae
growth and poor water quality. In contrast, aquaponics uses fish waste as a natural fertilizer for plants,
which absorb nutrients to promote growth. This process helps maintain pure, pollution-free water,
supporting the health of both fish and plants.

Flowcharting enhances nutrient management. Direct fertilizer application prevents nutrient loss
and reduces pollution. Although traditional fertilizers are effective, they can be environmentally toxic,
causing nutrient leaching into water and decreasing oxygen levels. Fertilization minimizes runoft and
environmental harm.

Real-time monitoring and automation enhance the system's sustainability. These technologies
enable precise regulation of environmental factors, resulting in more efficient resource utilization and
improved farm management.

5.1. Comparative Study

The comparative analysis of the system's structure, sensor effectiveness, network behavior, and
application features clarifies the benefits of the proposed Al-based integrated farming system compared
to recent systems. The proposed system achieves better integration by combining hydroponics,
aquaculture, and fertigation into a well-coordinated, closed system, as shown in Table 1. The research
conducted by Aydin et al. [417] and Naphtali et al. (437 focuses solely on irrigation or hydroponics,
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overlooking vital factors related to nutrient recycling. Additionally, research by Dhinakaran et al. [427]
does not establish connections among modules, limiting resource optimization potential

In addition, the proposed system's decision-making process, facilitated by Al, enables real-time
adaptability and rapid adjustments to environmental conditions, irrigation schedules, and nutrient
delivery. Other strategies depend on static automation procedures or require human input, making them
comparatively less effective and scalable.

5.1.1. Sensor Layer Performance

The system tested had a 95% sensor accuracy rate, higher than the alternative system's performance
measures of 75% to 88%, as shown in Table 3. Unlike previous systems proposed by Naphtali et al. [437]
and Aydin et al. [417], the system presented here has full real-time monitoring capabilities. By utilizing
sensors with high levels of redundancy, the system's reliability is enhanced, ensuring minimal errors and
consistent data acquisition. Automation in agriculture has led to significant improvements in accuracy,
waste reduction, and productivity levels.

Table 4.

Sensor Layer.
KPI Proposed | Aydin et | Dhinakaran | Naphtali et al. | Uthman and | Sadek and

System al. [417] et al. [42] [43] Musa [44] Shehata [457]

Sensor Accuracy (%) 95% 85% 80% 83% 87% 88%
Real—t%me Monitoring Yes Limited Yes Limited Yes Yes
Capability
ben'smt . Redundancy - for High Low Medium Low Medium Medium
Reliability

5.1.2. Network Layer Performance
To evaluate the effectiveness of sleep scheduling at the network layer, the average power
consumption per reporting interval T was modeled as:

1
Pavg - ? ZI]VtJ + IslV
J

where [; and t; denote the currents and durations for transmission (Izy , t¢y), reception (I, tyy), and
processing(Lyroc , tproc), and Ig is the sleep-mode current. For comparison, a baseline “no-sleep” case
substitutes Ig; with the idle current [;4;. The relative savings are expressed as:

(sleep)
Power savings = 1 - —os [58]

= _(nosleep)
Pavg

Datasheet specifications for the ESP32 microcontroller [597, YFS201 flow sensor [607], SEN0169
pH sensor [617], DS18B20 temperature sensor [627], ISST105 turbidity sensor (637, and DP5200 water
level sensor [647] were used to parameterize the model. Using a 60-second reporting cycle and a
conservative transmission duration of 0.5 seconds, the estimated average node power consumption with
sleep scheduling was 8.39 mW, compared to 590.15 mW in the no-sleep baseline. This indicates an
approximate 98.6% reduction in network power consumption. Sensitivity analysis shows that shorter
transmission durations further reduce the cap P sub a. v g to below 1 mW, emphasizing the efficiency
gains achievable through optimized duty cycling.

Empirical measurements from the implemented prototype indicated:
e No-sleep: Pavg=11.3 mW
e With sleep: Pavg=0.30 mW

This translates to a 97% decrease in average power, consistent with predictions derived from the

datasheet. Under these conditions, the expected battery lifetime extends from approximately 27 days
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(no sleep) to about 2.8 years (with sleep). The energy consumed per packet transmission was measured
at roughly 22.2 mJ, confirming the benefits of aggressive sleep scheduling.

6. Discussion

Both analytical estimates and prototype results confirm that duty cycling is highly effective for
aquaponics monitoring systems. While datasheet models suggest conservative average power in the few
milliwatt range, experimental results indicate that careful firmware optimization, such as shorter active
intervals and aggressive deep sleep, can reduce consumption below 1 mW. This level of savings is
crucial for scaling wireless sensor networks (WSNs), enabling the use of compact batteries or energy
harvesting methods for multi-year deployments.

Compared to recent literature, the proposed Al-based integrated farming system is distinguished by
its full integration of hydroponics, aquaculture, and fertigation into a closed-loop architecture coupled
with Al-driven decision support (LSTM for time-series forecasting and adaptive control). Most recent
works focus on single-domain solutions: Aydin et al. [417] developed an IoT-enabled automated
irrigation system using decision-tree ML for scheduling, but did not address aquaculture or nutrient
recycling. Naphtali et al. [437 implemented an IoT hydroponic monitoring prototype with rule-based
automation, again without aquaculture integration. Dhinakaran et al. [427] and several aquaculture-
focused studies provide robust pond monitoring and fish health analytics, but do not reuse nutrients for
plant growth. Rahman et al. (837 demonstrate strong AloT approaches for crop recommendation and
nutrient parameter optimization in hydroponics, illustrating how Al can improve resource use; however,
they do not close the loop with aquaculture-derived nutrients. These comparisons show that your
proposed system fills an important niche by combining multi-module integration and Al-driven closed-
loop control, thereby enhancing sustainability and creating new opportunities for resource-efficient,
climate-resilient food production.

Table 5.
Comparative Analysis of Energy Efficiency and Power Optimization in Smart Agriculture Systems
Study Focus Area Energy Optimization | Reported Power | Limitation
Strategy Consumption / Savings
Proposed Integrated aquaponics— | Duty cycling + ESP32 | 97% savings (11.8 mW — Prototype stage;
System hydroponics—fertigation deep sleep + MQTT | 0.3 mW); battery life | tested at pilot scale
lightweight comms extended from 27 days —
2.8 years
Aydin et al. | Smart irrigation | IoT + ML scheduling; | ~30% energy reduction in | Limited to irrigation;
[41] (hydroponics-focused) basic idle power control irrigation pump | no deep network
scheduling optimization
Dhinakaran Aquaculture monitoring ML-assisted feeding + | ~25—40% energy saving | No integrated
et al. [42] optimized aerator cycles in aerators nutrient reuse;
aquaculture-only
Naphtali et | Hydroponics automation Rule-based IoT control; | Reported ~15% energy | No Al-driven power
al. [43] no explicit energy | saving (low-power relays | adaptation; limited to
scheduling + scheduling) hydroponics
Rahman et al. | AloT hydroponics Al-based crop | ~45% reduction in | Hydroponics only;
[83] recommendations + | overhead compared to | lacks  cross-domain
modular hydroponics | threshold-based methods | integration
control
Dennison et | Robotics + automation in | Robotics for feeding and | Energy consumption | High cost; scalability
al. [467] aquaponics/hydroponics monitoring; efficiency | reduced by ~85% via | is limited in small
from task automation robotics scheduling farms

6.1. Application Layer Performance

The proposed system stands out because it offers a unique opportunity to make decisions using Al
[447, unlike most other systems. Some systems, however, use established automation procedures that
lack flexibility. It features the most accessible Ul, making it easy to operate and control remotely.
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Another system demonstrated the least accessibility and required manual intervention [657]. While the
proposed system offers complete remote monitoring and control, some methods 437 do not provide
remote access, limiting their effectiveness for large-scale agricultural operations. The results indicate
that the system provides a modern, simple, Al-driven farming approach, ensuring efficiency, precision,
speed, and scalability.

Table 6.
Application Layer.
Proposed Aydin et al. Dhinakara Naphtali et | Uthman and Sadek and
KPI Svstem 41 n et al. al. F43 Musa 44 Shehata
yste [41] e - [45] usa [44] s
AI—d.rlven Decision Yes No Yes No Yes No
Making
User Interface . . . . . .
Accessibility High Medium High Medium High Medium
Remote Monitoring & Yes Limited Yes No Yes Yes
Control

The proposed Al-based integrated farming system is more flexible, automated, and well-integrated
than traditional methods. Although the methodology emphasizes irrigation, specifically hydroponics,
aquaculture practices, and fertigation, it is also part of an integrated agriculture system, as indicated by
Aydin et al. [417]. The use of artificial neural networks with predictive modeling offers a viable
alternative to static automation strategies and approaches proposed by Sadek and Shehata [457]
enabling real-time adjustments for inputs, irrigation schedules, and climate conditions. This
improvement was further enhanced by the implementation of advanced algorithms, which increased the
accuracy and real-time monitoring capabilities of the sensor module. Thanks to the new network
module, based on a modernized architecture that integrates advanced algorithms and cloud computing,
there has been a remarkable improvement in speed and data transfer compared to previous generations.
Avoiding real-time manual processes in earlier versions of the app module led to poorer performance,
which was improved through the use of Al and remote monitoring in more advanced versions. It was
observed that in the practice of integrated production systems augmented by artificial intelligence,
resource efficiency is improved, waste is reduced, and productivity is increased. The proposed innovative
framework serves as the basis for addressing several crucial barriers that limit progress toward
sustainable food production.

6.2. Climate Change Implications and Comparative Analysis

One of the key elements of the system is its attempt to mitigate and adapt to the effects of climate
change. Agriculture and aquaculture face some of the most severe impacts of climate change due to
increasing risks of water scarcity, nutrient loss, and decreased productivity [207]. The aquaponics,
hydroponics, and fertigation systems integrated into the proposed system are designed to close the gap
in shifting aquaculture and agriculture systems through the combined use of closed-loop nutrient
recycling, Al-driven system predictive control, and cloud-based, modular, scalable systems. This design
enhances input use efficiency by decoupling these systems from the net dependence on synthetic
tertilizers and water withdrawal, which are excessive for food production inputs. In food systems,
aquaponic and hydroponic systems, such as aquaponics combined with hydroponic fertigation, reduce
the net discharge of nutrients into the environment, augmenting biologically driven processes of
eutrophication and thereby mitigating net positive greenhouse gas emissions [217]. Optimal irrigation
and confined feeding regimes, embedded through LSTM (Long Short-Term Memory) systems, operate
across the entire decoupled food system, reducing wasted energy and water. The system's modular,
scalable design is innovative, enabling farmers to expand and adapt operations in response to climate-
driven changes in thermal, moisture, and stress conditions, thereby enhancing efficiency under climate
change.
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When compared with state-of-the-art systems, several insights emerge. Wang et al. [397] integrated
remote sensing and Al to enable climate-resilient agricultural monitoring at scale, particularly through
drones and satellites. Although highly scalable, this approach mainly supports decision-making at the
monitoring level without addressing nutrient or water circularity. Haq and Khan [207 developed crop
water requirement models under climate variability, demonstrating significant water savings in arid
regions. However, their framework was irrigation-focused and lacked full system integration. Haq [21]
advanced intelligent, multi-sensor water management systems capable of spatiotemporal modeling for
resilience, but nutrient recycling was only partially addressed. Meanwhile, Haq [227] employed
nanosatellite-based machine learning to analyze climate data at large scales, enhancing predictive
modeling, though without direct integration into controlled-environment production.

By contrast, the proposed system closes the loop between aquaculture and hydroponics while
integrating Al for prediction, optimization, and adaptive control. Unlike existing approaches that
emphasize either monitoring [897 or water-use efficiency [207], this work combines monitoring with
actionable control and recycling. It positions the system as a next-generation model for climate-smart
agriculture, capable of delivering both mitigation (reduced emissions and waste) and adaptation
(resilient food production under variable conditions).

Table 7.
Comparative Climate Change Considerations in State-of-the-Art Systems.

Study Focus Climate Change Consideration Integration & Sustainability
Proposed system | Integrated aquaponics— | Explicitly ~ addressed  (climate- | High: AI + nutrient/water
(this work) hydroponics—fertigation resilient closed-loop design) recycling

Wang, et al. [397] | Remote sensing & Al Explicitly addressed (monitoring for | High scalability, but

resilience)

monitoring-only

Haq and Khan | Irrigation under  climate | Explicitly addressed (water | High in water efficiency; limited

[20] change conservation in arid regions) integration

Haq [21] Intelligent water systems Explicitly addressed (multi-sensor | High sustainability in water,
Al for climate resilience) limited nutrient reuse

Haq [22] Satellite ML classification Explicitly addressed (climate data | High scalability; indirect effect

integration at scale)

on farming systems

6.3. Challenges in Scaling the System for Commercial Use

Scaling the integrated aquaponics—hydroponics—fertigation system from prototype to commercial
farms presents several challenges. High capital costs remain a major barrier, as larger systems demand
robust pumps, pipelines, greenhouses, and redundant infrastructure [21, 357]. Energy demand also
increases, requiring hybrid renewable sources and advanced power management to maintain efficiency
[397].

Reliable data transmission becomes increasingly complex at scale, as large farms generate
thousands of data points. Hybrid edge—cloud computing is necessary to reduce latency and network
congestion [47]. Sensor calibration and maintenance also present challenges, as errors multiply with
larger deployments, making automated calibration and sensor fusion essential [487.

Operational complexity increases with system size, necessitating skilled personnel trained in
biological and digital processes. Regulatory compliance and consumer acceptance significantly influence
adoption, especially concerning food safety and environmental standards. Additionally, local climate
stresses such as heat, drought, and water scarcity require adaptive designs that incorporate climate
projections [207].

In summary, commercial scaling will depend on reducing costs through modular adoption, ensuring
resilient energy and network systems, improving sensor reliability, and building operator capacity
within supportive regulatory frameworks.
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7. Conclusion

An Al-based farm management system was implemented using artificial intelligence and sensors to
monitor environmental variables, including plant health, pH levels, and water quality. Real-time data
from these sensors can be remotely controlled via a microcontroller, which receives and stores it in the
cloud. Notifications on mobile devices or a web dashboard alert farmers when parameters exceed
predetermined thresholds, facilitating emergency management of water pollution or nutrient
deficiencies.

Through the adjustment of irrigation, resource utilization is optimized, and water flow parameters
are based on real-time data, resulting in improved efficiency. LSTM and other Al algorithms enhance
predictive power by analyzing past data, helping farmers increase productivity and reduce waste.
Tracking greenhouse gas emissions and remotely monitoring farms are part of the system's goal to
facilitate sustainable practices and foster collaboration among stakeholders. Additionally, through
artificial intelligence, farmers can make data-driven decisions, monitor farm productivity to identify
patterns, and adjust their behavior to meet changing agricultural needs. This ultimately leads to more
sustainable and productive farming practices already in place.

8. Recommendations

For Al-driven systems to operate effectively in agriculture, they must address key issues of
scalability, accessibility, and user-friendliness. Although such systems have shown potential to improve
resource efficiency, crop yields, and environmental sustainability, their adoption remains limited due to
high costs, infrastructural constraints, and operational challenges. The following recommendations ofter
specific, actionable steps for farmers and researchers aiming to implement or expand similar systems.

1. Cost Reduction and Financial Support

1. Farmers should begin with modular adoption: deploying a single component (soil
moisture monitoring or pH sensing) before scaling up to full integration.
ii.  Researchers and policymakers should promote open-source Al frameworks and low-cost
sensor alternatives to reduce software and hardware expenses.
ii.  Governments and private investors should support uptake through public—private

partnerships (PPPs), targeted subsidies, low-interest credit schemes, and equipment-
leasing models.
2. Connectivity and Infrastructure

iv.  For regions with poor internet coverage, edge computing devices should be integrated
to process data locally, reducing dependence on cloud infrastructure.

v.  LoRaWAN or other low-power, long-range communication protocols should be
prioritized for transmitting data across large farmlands.

vi. Al models should include offline functionality, enabling the continuity of farm

operations even in intermittent network conditions.
3. Sensor Reliability and Data Accuracy

vil.  Farmers should adopt self-calibrating sensors where possible to reduce downtime and
ensure accurate readings.
Viil. Sensor fusion techniques, such as combining pH, turbidity, and temperature readings,

should be deployed to enhance prediction accuracy and minimize the risk of single-
sensor failure.
ix.  Researchers should apply transfer learning approaches so that Al models trained on
larger datasets can adapt effectively to smaller farms with limited historical data.
4. Operational Best Practices

x.  Farmers should receive training modules (via extension services or digital platforms) on
interpreting Al-generated insights and integrating them into daily decision-making.
xi.  Maintenance schedules should be standardized: periodic cleaning of water flow sensors,

recalibration of pH probes, and firmware updates for wireless modules.
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xil.  Data security protocols, including encryption and access keys, must be implemented to
safeguard farm data transmitted through IoT systems.
5. Policy and Community Engagement

xili.  Local governments should incentivize cooperative adoption models where farmers pool
resources to deploy shared Al-driven infrastructure.
xiv.  Universities and agricultural research institutes should collaborate with farming

cooperatives to provide technical support and continuous innovation testing.

8.1. Limitations and Future Scope

Despite the demonstrated potential of the proposed Al-driven system, several limitations remain:

1. Scalability constraints: While modular designs enhance adoption, scaling from pilot farms to
large commercial operations requires more robust energy management and cloud integration.

2. Sensor performance may degrade under extreme weather or prolonged submersion, which can
limit system reliability in harsher climates.

3. Cost Barriers: There may be barriers to entry for many smallholder farmers when trying to
acquire hardware, even when utilizing modular or open-source designs without enduring
subsidies.

4. Data Gaps: The available datasets concerning African agriculture are limited, which constrains
Al models' ability to generalize, given the diverse soils, water, and climatic conditions.

For future work, researchers should:
1. Develop ultra-low-cost sensor prototypes tailored to developing regions.
2. Explore renewable-powered IoT nodes (solar or micro-hydro) to support oft-grid farms.
3. Expand datasets through crowdsourced farm data collection and cross-country collaborations.
4. Investigate integration with climate-smart farming practices, such as predictive modelling of
droughts or nutrient cycles.
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