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Abstract: The energy sector, specifically residential electricity, must be managed to understand the 
electricity consumption model of each residence at any given time. This study introduces three hybrid 
forecasting techniques: Wavelet Transform-Kalman filters-ARIMA (WKA), Wavelet Transform-
Artificial Neural Networks-Kalman filters (WNNK), and Wavelet Transform-Artificial Neural 
Networks-ARIMA (WNNA). These hybrid forecasting models were individually applied to each dataset 
of each residence. The data for this study were collected from 28 different residences over a period of 2 
years and 5 months in Lomé, with measurements taken at one-minute intervals. The results, validated 
using error evaluation criteria such as Root Mean Square Error (RMSE), Mean Absolute Percentage 
Error (MAPE), and the correlation coefficient, revealed that 10 of the 28 residences achieved the best 
forecasting results with the WNNK hybrid model, 10 with the WKA model, and 8 with the WNNA 
model. This analysis enabled the classification of residences into three groups: Group 1, Group 2, and 
Group 3, corresponding respectively to the residences achieving the most accurate forecasting results 
with the hybrid models WNNK, WNNA, and WKA. This work not only enhanced the understanding of 
electricity consumption habits and provided a method for forecasting future electricity use but also 
categorized each residence into one of the three groups based on its level of consumption. 

Keywords: Electrical energy, Forecasting, Hybrid model, Residential consumption. 

 
1. Introduction  

Effective management of residential electrical energy remains a challenge for the development of 
the energy sector, considering the centralized or decentralized integration of external production 
sources into the overall energy management system. Proper management of residential electrical energy 
requires a thorough understanding of each residence's real-time energy consumption habits and accurate 
forecasting for each residence. When implemented, the integration of sometimes intermittent renewable 
energy resources and their management within the electrical energy system adds a layer of complexity 
to the system's operation [1]. Therefore, short-term and medium-term residential electrical energy 
forecasting is crucial. When done correctly, this type of energy forecasting plays a vital role in 
improving the reliability and efficiency of the electrical system and simplifies the integration of external 
energy resources while reducing operating costs [2]. Additionally, the availability of a database 
containing residential electrical energy data is essential for analyzing, understanding, and modeling 
residential energy consumption [3, 4]. Using artificial intelligence methods to forecast nonlinear and 
noisy systems yields better results than statistical methods, which are limited to stationary data. 
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Residential electrical energy data is very noisy, complex, and non-stationary. Several artificial 
intelligence methods have been used to predict residential electrical energy [5-7]. The non-stationarity, 
complexity, and noise present in electrical energy data can be explained by several factors, such as the 
unpredictable behavior of consumers towards electrical energy, sudden events, load shedding, and 
meteorological variations. All these factors limit the accuracy of predictions, even for artificial 
intelligence methods [8, 9]. Several hybrid methods, considering the strengths and weaknesses of the 
models to be hybridized, have improved the accuracy of residential electrical energy forecasts. To 
further enhance the performance of electrical energy forecasts, wavelet transform has often been coupled 
with the ARIMA model and/or neural networks to form a more efficient and robust hybrid model than 
singular artificial intelligence models [10]. Signal decomposition using the wavelet method allows data 
to be separated into several components. After obtaining the optimal decomposition level, an algorithm 
selects certain components from the decomposition to form hybrid models, while the rest is considered 
noise and eliminated from the model. Wavelet decomposition is a preprocessing step that improves 
performance for noisy data, such as residential electrical energy, before combining it with ARIMA 
models, neural networks, or Kalman filters. Hybrid models based on Kalman filters and/or wavelet 
transform have been used to improve prediction results in the residential energy sector [11-13]. This 
study aims to investigate residential electrical energy forecasting. To achieve this, several hybrid 
models were developed based on either wavelet transform, Kalman filters, or both, combined with a 
statistical model (ARIMA) and/or a machine learning model (artificial neural networks). The three 
hybrid models, WKA, WNNK, and WNNA, were applied to the collected residential electrical energy 
data and evaluated to validate the model that provides the optimal forecast for each considered 
residence. The forecasting performance results were evaluated using criteria such as the correlation 
coefficient (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) for the 
three proposed hybrid models. The rest of this work is structured into several sections: Section 2 covers 
the literature review, Section 3 discusses the framework of the hybrid approaches WNNK, WNNA, and 
WKA, Section 4 shows the performance evaluation criteria and Section 5 presents the results and 
discussions. 
 

2. Literature Review 
Several methods in the literature allow for the prediction of residential electrical energy. For 

instance, in Ramos, et al. [14] the authors compare the performance of different model architectures, 
such as recurrent neural networks (RNN), long short-term memory (LSTM), gated recurrent units 
(GRU), and time series transformers (TST). The study also proposes an ensemble method optimized by 
simulated annealing to improve the accuracy of residential energy consumption forecasts. La Tona, et al. 
[15] employs an LSTM encoder-decoder architecture to integrate historical and future exogenous 
variables. The results were compared to three other methods, showing a reduction in mean absolute 
error of up to 8%. Hybrid methods provide additional improvements in prediction, as seen in Fan, et al. 
[16] where the authors propose a hybrid method combining empirical wavelet transform, long short-
term memory, and support vector machines. The results show that this hybrid model outperforms other 
models. Gao, et al. [17] proposes an innovative hybrid model to predict residential electricity 
consumption. This model integrates online search data to improve forecast accuracy. The study results 
demonstrate a significant improvement in forecast accuracy compared to traditional models. Research 
related to prediction using hybrid methods formed by combining three of the following models: 
wavelets, Kalman filters, neural networks, and the ARIMA model, is not related to residential 
prediction. Patel and Deb [18] developed several hybrid models for wind forecasting based on the 
Kalman filter and wavelet transform. Their combination with the ARIMA model or certain machine 
learning models such as Support Vector Regression and Random Forest Regression revealed that the 
best precise prediction performance was found with the hybrid Kalman filter-wavelet transform-machine 
learning model (KF-WT-ML) on different terrains. In Khashei and Mahdavi Sharif [19] proposed a 
hybrid model combining a Kalman filter to preprocess data and reduce noise, ARIMA, and artificial 
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neural networks to improve the accuracy of exchange rate forecasts. In Zhang, et al. [10]a hybrid model 
was proposed to improve the accuracy of short-term electrical load forecasts. This model combines 
improved empirical mode decomposition, autoregressive integrated moving average, and wavelet neural 
networks, which are subsequently optimized by the fruit fly optimization algorithm (FOA). The results 
show that this hybrid model outperforms other models in terms of forecast accuracy. 

Although there are several studies that address the forecasting of residential electric energy, there 
are no concrete studies of this nature applied to West African countries and more specifically to the city 
of Lomé in Togo. Additionally, hybrid methods developed to categorize types of residences in a given 
region have not yet been addressed. In the field of residential prediction, it is of utmost importance for 
producers or prosumers (simultaneous producers and consumers) of electricity to know the consumption 
of each residence at all times to better manage the recurring problem of the amount of energy produced, 
distribution, and consumption. Kalman filters and wavelet transform have the ability to process             
non-stationary signals and extract relevant information from noisy residential electrical energy data. 
This work addressed the forecasting of electrical energy for 28 residences collected in the city of Lomé 
using three hybrid models: WNNA, WNNK, and WKA, followed by the categorization of residences 
based on a compromise between the performance of each hybrid model and the characteristics of the 
residence data. 
 

3. Materials and Methods 
For this study, residential electrical energy data was collected every minute for 28 houses from a 

dataset gathered in Lomé, southern Togo, West Africa, covering the period from 15/07/2021 10:15 to 
28/12/2023 23:59 for all 28 residences considered. The data collected from various locations in Lomé 
includes parameters such as active power, reactive power, apparent power, voltage, current, harmonics, 
and anomalies such as overvoltage, voltage imbalance, voltage dips, and load shedding. All these 
parameters and anomalies in the residential electrical network contribute to providing a clear picture of 
the electricity consumption profile of each residence. The collected data is decomposed into one-minute 
intervals selected using the PEL 106 data collection module during the collection process. This 
collected data provides information on load shedding frequencies, the nature of the energy source used 
in the residence, the quality of the electrical installation, and the amount of electrical energy consumed 
for each residence. Data collection is the only means to obtain the necessary data for studying and 
understanding the electricity consumption profile of each residence. This work can make electrical 
networks more dynamic and flexible for the development of a smarter system for integrating 
decentralized production sources by developing robust methods for forecasting residential electrical 
energy in Lomé. 
 
3.1. Wavelet Method 

Wavelets can adapt to the signal being processed with the ability to stretch or compress. These 
properties of compact function and null support function give them the capability to analyze and process 
unstable and noisy signals. The wavelet transforms functions as a signal adapter, acting on the signal to 
be analyzed by varying the scale of signal analysis to extract details present at different resolutions [6]. 
For a signal to be considered a wavelet, it must satisfy certain specific mathematical conditions: The 
first condition is that of admissibility, defined by equations 1 and 2. 

𝐶𝜓 = ∫
|𝜓′(𝜔)|

2

|𝜔|

+∞

0
𝑑𝜔 < +∞                                                 (1) 

𝜓′(𝜔) = ∫ 𝜓(𝑡)𝑒−𝑖(2𝜋𝑓)𝑡𝑑𝑡
+∞

−∞
                                           (2) 

This means that the total energy of the wavelet must be finite. This condition ensures that the 

wavelet transform is invertible. Here the Fourier transform of 𝜓(𝑡) gives 𝜓′(𝜔)and𝑐𝜓is the 
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admissibility constant. The second condition is the zero-moment condition, which is defined by relation 

3. 

∫ 𝜓(𝑡)𝑑𝑡
+∞

−∞
= 𝜓(𝑓 = 0) = 0                                       (3) 

This means that the wavelet must have a zero mean. In other words, the continuous component of 
the wavelet must be removed, allowing the wavelet to capture local variations in the signal. The third 
condition is Localization, which states that the wavelet must be well localized in both the time domain 
and the frequency domain as explained in relation 4. 

𝜓𝑥,𝑦(𝑡) =
1

√|𝑥|
𝜓 (

𝑡−𝑦

𝑥
)                                          (4) 

With 𝑥 representing the scale parameter, which is used to compress or stretch the signal, and 𝑦 

representing the parameter that translates the temporal position of the wavelet along the signal. For a 

discrete wavelet decomposition of time series, relations 5 and 6 are respectively the scaling function and 

the mother wavelet function [20].  

𝜓𝑗,𝑘(𝑎) = √2𝑗𝜓(2𝑗 − 𝑎)                                                            (5) 

𝜑𝑗,𝑘(𝑎) = √2𝑗𝜑(2𝑗 − 𝑎)                                                         (6) 

𝐴𝐶𝐽,𝑘and 𝐷𝐶𝑗,𝑘are respectively the approximation and detail coefficients obtained after convolution 

of the mother wavelet function 𝜑𝐽,𝑘and scaling function 𝜓𝑗,𝑘with the original signal f(t) as described in 

expressions 7 and 8.      

𝐴𝐶𝐽,𝑘 = ∫ 𝑓(𝑡)𝜑𝐽,𝑘𝑑𝑡
+∞

−∞
                             (7)                                                                                                                         

𝐷𝐶𝑗,𝑘 = ∫ 𝑓(𝑡)𝜓𝑗,𝑘𝑑𝑡
+∞

−∞
                             (8) 

The residential electrical energy data considered is discretized and controlled over time. If we 

consider𝑦(𝑡) as the time-discretized series whose length is given by the relation 𝑘 = 2𝑗, equation 9 can 

be written. 

𝑦(𝑡) = ∑ 𝐴𝐶𝐽,𝑘𝜑𝑗,𝑘(𝑡) + ∑ ∑ 𝐷𝐶𝑗,𝑘𝜓𝑗,𝑘(𝑡)
2𝐽−𝑘−1
𝑘=−∞

𝐽
𝑗=1

2𝐽−𝑘−1
𝑘=−∞                         (9) 

 
3.2. ARIMA Model 

The ARIMA model is a statistical forecasting model that predicts future values of a time series by 

making a linear combination of past values. The ARIMA model is distinguished by three parts: the 

autoregressive (AR) part characterized by the parameter p, the differencing (I) part characterized by the 

parameter d, and the moving average (MA) part represented by the parameter q. p, d, and q are the 

hyperparameters that need to be found and used to obtain an optimal forecast. These three parameters 

are related by relation 10.  

(1 − ∑ 𝜑𝑘𝐿
𝑘𝑝

𝑘=1 )(1 − 𝐿)𝑑 = (1 + ∑ 𝜃𝑛𝐿
𝑛𝑞

𝑛=1 )𝜀𝑛                       (10) 

In this relationship,𝜀𝑛expresses the random error; 𝜑𝑘and 𝜃𝑛are coefficients used in the ARIMA 

model. The Akaike Information Criterion (AIC) is used to select the optimal p, d, and q parameters for 

modeling the ARIMA model. This criterion is defined by relation 11. 

𝐴𝐼𝐶 = 2(𝑁𝑡 − 𝑙𝑛(𝐿𝑣))                                    (11) 

With 𝑁𝑡 and 𝐿𝑣 representing respectively the total number of parameters to be used and the 
maximum value of the ARIMA model parameter function determined from the observed data. The p, d, 
q, parameters that correspond to the optimal model are those with the lowest Akaike Information 
Criterion (AIC) value. The AIC criterion is based on a logic that balances the complexity of the model 
used for forecasting and the efficiency of the fit. 
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3.3. Neural Networks Model 
For neural network modeling, a given number of layers is defined, and each of these layers 

comprises a group of interconnected neurons. Thus, an input layer, an output layer, and an intermediate 

layer, which is a hidden layer, are associated. Neural networks use synaptic weights, which are 

stochastically initialized and adjusted to obtain an optimal prediction. The weighted inputs are added at 

each neuron, thus linking the activation function and the summation process [21]. This overall 

activation function clearly shows the non-linearity between the input system and the output system, 

defined as follows: 

𝑌𝑚(𝑡) = ∑ 𝜔𝑛𝑚𝑥𝑛(𝑡) + 𝛽𝑚
𝑁
𝑛=1                                (12) 

This relationship ensures that activation functions, including logistic, ReLU, or hyperbolic 

functions, are all included to describe the nonlinear relationship between input and output. With 𝑌𝑚 

,𝜔𝑚𝑛,𝛽𝑚and 𝑥𝑛 representing the weighted sum, weights, bias, and input, respectively. Each neuron 
sums the weighted inputs and maps the summation to the output. Neural networks are widely used in 
the field of time series prediction using an iterative function that adjusts and corrects parameters at each 
iteration until optimal predicted values are obtained. Figure 3 shows the circuit from inputs to outputs. 

 

 
Figure1. 

Architecture of Artificial Neurons. 

 

3.4. The Kalman Filter  

Relations 13 and 14 define the observed state equation of the algorithm used to model the 

processing by the Kalman filter [22]. 

𝒙𝒕 = 𝜶𝒙𝒕−𝟏 + 𝜷𝒕                                   (13) 

𝑦𝑡 = 𝜆𝑥𝑡 + 𝛿𝑡                                               (14) 

Both 𝑥𝑡and𝑦𝑡are target state vectors. 𝑥𝑡is expressed as a function of the state transition matrix 

𝛼and the known state vector at time t-1, while 𝑦𝑡is estimated by the known state vector at time t with 

the state observation matrix 𝜆. The matrices 𝛽𝑡and𝛿𝑡represent the covariance of the system excitation, 

sometimes perceived as noise, and the covariance of the observation noise, respectively. The Kalman 

filter, based on mathematical and applied physics principles, allows the assimilation of the covariance of 

excitation noises of the entire system to be modeled. Relations 15 and 16, expressed by 𝑥𝑡|𝑡 and 𝑥𝑡+1|𝑡 

show the evident recursion of the signal using the Kalman filter. These relations explicitly take into 
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account past data to estimate the current state. The update of this estimation is done by considering the 

current state and past states to estimate a new state. 𝑥𝑡and 𝑌𝑡 being Gaussian functions, it is possible to 

use the following standard formulas to predict 𝑥𝑡+1|𝑡 

𝑥𝑡|𝑡 = �̄�𝑡 + ∑ ∑ (𝑦𝑡 − 𝑦𝑡)
−1
𝑦𝑡𝑥𝑡𝑦𝑡                       (15) 

𝑥𝑡+1|𝑡 = 𝛼𝑥𝑡|𝑡                                                (16) 

The Kalman filter will be used for preprocessing, which involves reducing noise in a signal, making 
real-time estimates, or being hybridized with another model to achieve better results. The algorithm 
used to model the Kalman filter follows the process represented in Figure 2. 

 

 
Figure 2. 
The Kalman Filter Modeling Algorithm. 

 
T denotes the timestamp for the estimation of the state matrix, R is provided by the radar with the 

timestamp indicating when the measurement took place, and t is the measurement covariance matrix. 
 
3.5. Hybrid Model  

The first step of this study is wavelet decomposition. This step involves decomposing into its 

various approximation and detail components and selecting those that will be injected into other 

forecasting models. The optimal decomposition level to obtain the best results corresponding to each of 

the 28 residences is determined by the following formula [23], 

𝐿ℎ = 𝑖𝑛𝑡[𝑙𝑜𝑔(𝑁ℎ)]                          (17) 

Where 𝐿ℎ represents the maximum allowable decomposition level by the signal and 𝑁ℎthe signal 

length of the data collected per residence. Table 1 summarizes the 28 houses and their optimal allowable 

decomposition level.  
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Table 1. 
The level of decomposition achieved for each residence. 
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Figure 3 shows the order in which the different detail and approximation coefficients are obtained 

based on the decomposition level chosen for each residence and the correspondence between the 

decomposition level and the residences whose signal length verified by relation 17 gives the concerned 

decomposition level. 

 
Figure 3. 
Wavelet Decomposition of Different Residences. 

 
Ri is the residence at rank i, with i ranging from 1 to 28. The next step is to use, according to the 

appropriate decomposition level, all the detail coefficients and the approximation coefficient of the last 
decomposition level. Table 2 clearly shows each level of decomposition and the different coefficients 
obtained. 
 
Table 2. 
Decomposition Levels and Obtained Coefficients. 

Decomposition level  Coefficients obtained 

Level 1 ACLevel1+DCLevel1 
Level 2 ACLevel2+DCLevel2+DCLevel1 

Level 3 ACLevel3+DCLevel3+DCLevel2+DCLevel1 
Level 4 ACLevel4+DCLevel4+DCLevel3+DCLevel2+DCLevel1 

 
Daubechies wavelets of order 3 are chosen as the mother wavelet due to their optimal adaptation 

and their ability to more easily identify the information carried by residential electrical load signals 
[24]. 
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3.5.1. Wavelet Coupled to Neural Network and ARIMA (WNNA) 
The hybrid wavelet-neural network-ARIMA model consists of several steps. The first step involves 

performing discrete wavelet decomposition. After obtaining the various coefficients from the 
decomposition, the approximation coefficient from the last level of decomposition and all the detail 
coefficients obtained from the first level to the last level of decomposition are retained for further 
modeling. The second step involves using the approximation coefficient (ACLevel n) to inject it into the 
ARIMA model and the detail coefficients (DCLevel n, DCLevel n-1, ..., DCLevel 1) to inject them 
separately into the neural network model for prediction purposes (n represents the maximum 
decomposition level of the electrical energy data of residence Ri). The final step involves predicting the 
different coefficients and summing these predicted coefficients to obtain the final prediction. Figure 4 
represents the flowchart followed to model the hybrid WNNA model. 

 

 
Figure 4. 
Diagram characterizing the WNNA model. 

 
Due to the fact that the approximation parts are low-frequency components showing the signal 

trend, ACLevel n will be modeled with the ARIMA model. The detail parts, on the other hand, 
represent high-frequency components that contain a lot of undesirable noise. This noise is preprocessed 
using denoising techniques. After this preprocessing, the detail coefficients are less noisy but exhibit 
complexity and non-linearity. Therefore, the neural network model is used to model the coefficients 
DCLevel n, DCLevel n-1, ..., DCLevel 1. 
 
3.5.2. Wavelet Coupled to Neural Network and Kalman (WNNK) 

The hybrid model proposed in this section is based on wavelet decomposition, the Kalman filter, and 
neural networks. The approximation and detail coefficients are separately introduced into the Kalman 
filter algorithm, which eliminates interferences and reduces noise on each coefficient. After processing 
by the Kalman filter, we obtain the estimates of each coefficient. At the input, the coefficients ACLevel 
n(i-1), DCLevel n(i-1), ACLevel n-1(i-1), ..., DCLevel 1(i-1) become, respectively, at the output of the 
Kalman filter, ACLevel n(i), DCLevel n(i), ACLevel n-1(i), ..., DCLevel 1(i). ei represents the set of these 
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coefficients obtained at the output of the Kalman filter, so e1 would be equal to the coefficient ACLevel 
n(1), DCLevel n(1), ACLevel n-1(1), ..., DCLevel 1(1), considered separately when injected into the 
neural network model. e2, in turn, will be equal to ACLevel n(2), DCLevel n(2), ACLevel n-1(2), ..., 
DCLevel 1(2), and so on up to ei. Yi represents the output of the neural networks where the sum of the 
different coefficient estimates is already applied. 

 

 
Figure 5. 
Outlines the structure of the hybrid WNNK model. 

 
This method, identified as a robust method due to the non-linearity of electrical energy data, is 

applied to the entire dataset of each residence for forecasting. 
 
3.5.3. Wavelet Coupled to ARIMA and Kalman (WKA) 

This method, based on discrete wavelet decomposition, the Kalman filter, and the ARIMA model, 
combines the advantages of wavelets for signal decomposition, the Kalman filter for state estimation of 
each coefficient obtained after decomposition, and ARIMA for final modeling. After the final prediction 
of the different coefficients, we obtain Yi, which represents the sum of the predictions of the different 
coefficients at the output of the ARIMA model. Figure 6 shows the structural diagram of the hybrid 
WKA method. 
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Figure 6. 

Structural Diagram of the Hybrid WKA Method. 

 

4. Evaluation Metrics 
The Root Mean Square Error (RMSE) gives an idea of the dispersion of residuals. Lower RMSE 

values indicate a better fit of the model to the data. The formula that determines the RMSE is defined by 

relation 18 [25], 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ [𝑥(𝑡) − 𝑥′(𝑡)]𝑛
𝑡−1

2
                         (18) 

With 𝑛 representing the total number of observations,𝑥(𝑡) the observed values, and 𝑥′(𝑡) the values 
predicted by the model. 

The Mean Absolute Percentage Error (MAPE) provides a clear interpretation of the magnitude of 
the error in percentage terms, with lower values indicating better model performance. Relation 19 
allows for the calculation of the MAPE [27]. 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝑥(𝑡)−𝑥′(𝑡)

𝑥(𝑡)
| × 100𝑛

𝑡−1                                (19) 

With 𝑛 representing the total number of observations,𝑥(𝑡) the observed values, and 𝑥′(𝑡) the values 

predicted by the model. 

The correlation coefficient (𝑅2) ranges between 0 and 1, where 0 indicates no correlation, and 1 

indicates a strong correlation. Relation 20 allows for the calculation of the 𝑅2[26], 

𝑅2 = 1 −
∑ (𝑥(𝑡)−𝑥′(𝑡))2𝑛
𝑖=1

∑ ((𝑥(𝑡)−𝑥)2𝑛
𝑖=1

                                            (20) 

With 𝑛 representing the total number of observations,𝑥(𝑡) the observed values, 𝑥′(𝑡) the values 

predicted by the model and 𝑥 is the mean of the observed values. These criteria allow the evaluation of 
the accuracy and robustness of forecasting models. 
 

5. Discussion of the Results 
The different models were developed and applied to the electrical energy datasets of each of the 28 

residences for prediction purposes. The performances provided by the different hybrid models are 
compared to each other in order to find accurate and relevant prediction results with the least possible 
error for each residence. Table 3 shows the predictive performance of the 3 hybrid models on the 28 
residences.  



1902 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 3: 1892-1907, 2025 
DOI: 10.55214/25768484.v9i3.5716 
© 2025 by the authors; licensee Learning Gate 

 

Table 3. 
Predictive Performance of Hybrid Models on the 28 Residences. 

Model WNNA WNNK WKA 

         Error 
Ri 

RMSE MAPE R2 RMSE MAPE R2 RMSE MAPE R2 

R1 0.3085 0.1089 0.8072 0.0641 0.0245 0.9701 0.3482 0.1826 0.7110 
R2 0.1925 0.0753 0.9041 0.2443 0.1901 0.7803 0.4754 0.2230 0.6891 

R3 0.1791 0.0739 0.9109 0.2812 0.2011 0.7761 0.4492 0.2152 0.6594 
R4 0.5201 0.3011 0.7317 0.4862 0.3071 0.7372 0.1896 0.0856 0.9381 

R5 0.4758 0.1820 0.7901 0.0547 0.0482 0.9785 0.4207 0.1918 0.7978 
R6 0.2982 0.1584 0.8042 0.0426 0.0251 0.9683 0.3821 0.2205 0.7273 

R7 0.3841 0.1825 0.8145 0.0487 0.0348 0.9706 0.4895 0.3308 0.6842 
R8 0.4824 0.2847 0.7457 0.4251 0.2958 0.7390 0.1564 0.0767 0.9521 

R9 0.0987 0.0225 0.9582 0.1897 0.1457 0.8285 0.3933 0.2014 0.7099 

R10 0.4257 0.3044 0.8294 0.4335 0.2484 0.7580 0.1875 0.0905 0.9596 
R11 0.4982 0.2034 0.7524 0.0687 0.0342 0.9591 0.4987 0.2624 0.7604 

R12 0.5081 0.2351 0.7643 0.3987 0.2384 0.7492 0.1753 0.0568 0.9621 
R13 0.5279 0.3728 0.8631 0.5039 0.2874 0.7561 0.0982 0.0428 0.9729 

R14 0.1074 0.0532 0.9281 0.2089 0.2008 0.8021 0.4268 0.2601 0.6986 
R15 0.5012 0.2881 0.7208 0.0385 0.0215 0.9705 0.4821 0.2035 0.7058 

R16 0.5174 0.2396 0.8025 0.4832 0.2147 0.7421 0.0849 0.0628 0.9782 
R17 0.4842 0.2451 0.6924 0.0814 0.0254 0.9681 0.4521 0.2564 0.7105 

R18 0.1904 0.0820 0.9082 0.2552 0.1992 0.7928 0.4356 0.2504 0.7109 

R19 0.1891 0.0864 0.9318 0.2406 0.1877 0.8083 0.4805 0.2620 0.8012 
R20 0.4369 0.3046 0.7613 0.4157 0.2541 0.7857 0.0793 0.0845 0.9765 

R21 0.4631 0.3007 0.7922 0.4554 0.2754 0.7658 0.1092 0.0958 0.9699 
R22 0.5170 0.2901 0.6881 0.0753 0.0267 0.9758 0.4952 0.2387 0.6899 

R23 0.4129 0.2642 0.7733 0.4895 0.2814 0.8089 0.0888 0.0927 0.9795 
R24 0.0991 0.0427 0.9428 0.1908 0.1562 0.8108 0.4042 0.2115 0.7509 

R25 0.4935 0.2140 0.8113 0.4458 0.2357 0.7892 0.1982 0.0687 0.9808 
R26 0.1729 0.0842 0.9349 0.2256 0.2101 0.8176 0.4385 0.2780 0.6991 

R27 0.4856 0.1992 0.7345 0.0895 0.0354 0.9752 0.4951 0.1572 0.8056 

R28 0.4231 0.2123 0.8325 0.0971 0.0481 0.9810 0.4824 0.1842 0.8149 

 
This table shows that it is possible to classify the residences into 3 groups based on the prediction 

results. Group 1 consists of 10 residences (R1, R5, R6, R7, R11, R15, R17, R22, R27, R28) which give 
the best results with the hybrid WNNK model. Group 2 includes 8 residences (R2, R3, R9, R14, R18, 
R19, R24, R26) and gives the best results with the hybrid WNNA model. Group 3 consists of 10 
residences (R4, R8, R10, R12, R13, R16, R20, R21, R23, R25) which give the best results with the 
hybrid WKA model. The error evaluation criteria applied to Group 1 show R2 values ranging from 
0.9591 to 0.9810 for the hybrid WNNK model, while the other hybrid models for the same group give 
R2 values ranging from 0.6881 to 0.8325 for the WNNA model and from 0.6842 to 0.8149 for the WKA 
model. For Group 2, the R2 values range from 0.9041 to 0.9582 for the hybrid WNNA model, while the 
other hybrid models for the same group give R2 values ranging from 0.7761 to 0.8285 for the WNNK 
model and from 0.6594 to 0.8012 for the WKA model. Finally, for Group 3, the R2 values range from 
0.9381 to 0.9808 for the hybrid WKA model, while the other hybrid models for the same group give R2 
values ranging from 0.7317 to 0.8631 for the WNNA model and from 0.7372 to 0.8089 for the WNNK 
model. Three residences, each belonging to one of the three groups, are visualized in the following 
figures, highlighting the predictions given by the three hybrid models each time. Based on the 
residences that give the highest correlation coefficients, the choice for visualization was made for 
residence R28 for Group 1, R9 for Group 2, and R25 for Group 3. 
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Figure 7. 
Comparison of Different Results of Hybrid Models for Residence R28. 

 

 
Figure 8. 
Comparison of Different Results of Hybrid Models for Residence R9. 
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Figure 9. 
Comparison of Different Results of Hybrid Models for Residence R25. 

 
These graphs in Figures 7, 8, and 9 show the predicted values by the hybrid models WNNA, 

WNNK, WKA and the actual observed values used to test the models for the considered residences. As 
shown in Figure 7, the prediction given by residence 28 of Group 1 with the hybrid WNNA model is 
more correlated with the observed signal than with the WNNK and WKA models. Similarly, in Figure 
8, the prediction of residence 9 of Group 2 given by the hybrid WNNK model shows a better correlation 
with the actual observed signal than that given by the WNNA and WKA models. The prediction of 
residence 25 of Group 3 given by the hybrid WKA model has a stronger correlation with the actual 
observed signal than that given by the WNNA and WNNK models. According to the obtained results, 
the signal trend provides information about the nature of the data, showing how unstable the signal is. 
The smoother the signal and the lower the amplitude (between 0 and 1watt-hour (Wh)), the better the 
results with the hybrid WNNK model. For trends where the signal is very unstable and noisy with 
many fluctuations, there are two possibilities: one with very low amplitudes (between 0 and 2 Wh) 
which offers the best results with the hybrid WNNA model, and the other with relatively high 
amplitudes (between 0 and 7 Wh) which gives better results with the hybrid WKA model. The data of 
the residences belonging to a given group present several similarities such as the level of electrical 
voltage, the intensity of the electrical current, the network frequency, the consumed and produced 
power (active, reactive, and apparent), the quality of harmonics, voltage dips and peaks, the quality of 
the power factor, event capture (load shedding), the nature of the energy source used in the residence, 
the quality of the electrical installation performed, and the average consumed power. 
 

6. Conclusions 
Mastering the consumption habits of residences requires a thorough analysis of the collected data 

followed by accurate predictions for each residence. This is the foundation of the dynamism of the 
residential energy sector, enabling optimal decision-making by the network manager and the potential 
integration of decentralized production sources when necessary. In this work, three hybrid models were 
developed based on wavelet decomposition, which is then combined with neural networks and the 
Kalman filter, or neural networks and ARIMA, or the Kalman filter and ARIMA, to find a suitable 
prediction model for each category of residence. The analysis of the collected electrical energy data 
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allows classifying a given residence into its respective group. As each group is affiliated with a hybrid 
model, error verification tests performed with RMSE, MAPE, and R2 have confirmed that residences 
belonging to Group 1, Group 2, and Group 3 respectively provide optimal prediction results with the 
hybrid models WNNK, WNNA, and WKA. Mastering electrical energy at the residential level 
contributes to accurately understanding the consumption pattern of each residence. By categorizing 
each residence into one of these three groups, it is possible to determine in advance the appropriate 
hybrid prediction model for each residence. This mastery of energy at the residential level will be 
beneficial not only to consumers but also to the electrical network manager by offering the possibility to 
anticipate future electrical energy consumption and take necessary measures for the potential 
integration of decentralized production sources. 
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