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Abstract: Autonomous driving systems (ADSs) hold promise for enhancing safety and efficiency on the 
roads; yet, concerns persist due to rising fatalities involving vehicles equipped with ADSs. This research 
comprehensively examines the technical components of ADSs, including current challenges, system 
designs, evolving techniques, and critical features like sensor technologies such as Light Detection and 
Ranging (LiDAR) and cameras. These sensors enable vehicles to perceive their environment accurately, 
facilitating tasks such as navigation and obstacle avoidance. Advanced edge detection strategies for lane 
detection and the usage of Lane Keeping Assist (LKA) structures are crucial technologies for ADS. 
Hence, in this paper, we implement a modified Sobel edge detection algorithm to improve its 
performance for lane detection and integrate a CNN-based approach into our system. By trying various 
Gaussian filter parameters, we develop an optimized edge detection system that performs well in 
different lighting and weather conditions, such as low light or rainy weather. In our work, we 
implement a Convolutional Neural Network (CNN) for edge detection and train it using a 
comprehensive dataset of road images and traffic scenes. The dataset includes a diverse range of 
conditions, such as different lighting (day and night), weather (clear, rainy, foggy), and road types 
(highways, urban streets, rural roads). This extensive dataset allows the CNN to learn features robustly 
and generalize well across various driving scenarios. Simulation and results show that our CNN-based 
approach has high performance, as it exhibits high accuracy and low processing time needed for ADSs. 

Keywords: Autonomous driving systems, CNN, Edge detection, Lane keeping assist, Machine Learning, PID controller. 

 
1. Introduction  

Automated or autonomous or driving systems (ADSs), have the potential to make driving secure, 
high-quality, and effective. On the opposite hand, the quantity of fatalities related to automobiles with 
ADSs is rising. The requirement for improvement in ADS prevents it from accomplishing its complete 
capability. The technical components of automated riding are thoroughly tested in this research, which 
additionally conducts in-depth survey on cutting-edge solutions, high-level system designs, growing 
techniques, and vital functions for self-driving cars or autonomous vehicles (AVs). AVs make use of lots 
of technological techniques to examine the environment using sensors placed all around the automobile. 
This consists of sensors which can be used to sense the environment successfully and absolutely, such as 
Light Detection and Ranging (LiDAR) and cameras. Vision in self-sustaining automobiles is performed 
with the aid of a number of technologies, which includes sensors. The automobile recognizes and 
evaluates its environment, such as surrounding vehicles and limitations, while statistics is accrued. 
Based on these statistics, it then takes the proper moves, in order to get on the meant destination 
properly and efficaciously. The process of creating appropriate selections is based totally on statistics 
evaluation that is called planning. Determining the best route Mansour and Said [1] the proper speed 
and the encompassing environment are all part of the planning, which use auxiliary systems like GPS. 
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In safety systems, sensors are used in the vehicle’s localization process. To improve the localization 
precision and help the vehicle decide its position, complex algorithms and human-device interface are 
adopted. Therefore, sophisticated algorithms are essential for quickly and accurately evaluating the vast 
amount of data collected from sensors and making judgements accordingly. This guarantees prompt 
decision-making in addition to safe driving for the driver and passengers. 

Most ADSs frequently use various sensors and algorithms to break down the complex work of 
automated driving into less difficult processes. Society of Automotive Engineers (SAE) defines ADS as 
hardware-software program structures which is capable of supporting dynamic riding obligations in an 
environmentally friendly way. The SAE categorizes ADS capabilities into five levels of automation, 
from basic driver assistance to fully autonomous operation, although challenges remain in achieving 
higher levels of automation due to environmental uncertainties and some human factors. Level one 
includes the basic driving that involves balance manage, anti-lock braking systems, and adaptive cruise 
manipulation. Despite concerns, ongoing technological advancements aim to address safety issues and 
improve public confidence in ADSs, such as safety standards in aviation automation. With advanced 
technology, emergency braking and coincidence avoidance, become easier. Level-two automation is now 
a feasible due to partial automation. While, Level three introduces conditional automation, permitting 
drivers to divert their interest from using regular operations. Yet, they should respond to emergency 
alerts and be prepared to renew manipulation. Level three automated systems perform inside particular 
operational layout domain names such as highways. Levels four and five take away the need for human 
attention absolutely.    

However, the fourth stage of self-driving involves the needed infrastructure, on-demand operation 
and a separate set of maps in case the vehicle leaves its assigned area. Additionally, the automobile is 
capable of parking itself [2]. In the fifth stage, the vehicle could find its way in any network and in any 
form of climate. Nevertheless, no car is able to absolutely carry out the self-driving functioning of the 
fourth and fifth levels. This is because of unexpected environmental conditions, problems introduced by 
human behaviour. Most ongoing studies aim to create robust self-riding and enhance safety protocols. 
For independent riding, safety structures involve the protection requirements of automatic aviation, 
where they incorporate design to lessen hazards and improve performance and safety.  

The creation of ADSs represents a modern-day shift in the automobile-driving era. By using various 
sensors, artificial intelligence, and real-time information processing, ADSs are designed to run on their 
own. The integration of several sensing technologies, which permit the vehicle to precisely sense its 
environment, is crucial to the functioning of ADSs. These technologies include cameras, radar, 
ultrasonic sensors, LiDAR, and others. The potential of the system to discover and examine its 
surroundings is enhanced through statistics that each sensor gives, for example, LiDAR makes use of 
laser pulses to supply high-precision 3-dimensional maps of the region across the automobile. This 
feature is crucial for identifying specific items and mapping the surroundings, which permit the 
automobile to manoeuvre throughout hard environments. By measuring the gap and velocity of nearby 
items, radar sensors supplement LiDAR. This is specifically beneficial in exclusive climate scenarios in 
which optical sensors may not function appropriately. 

Ultrasonic sensors assist in parking and obstacle avoidance because they are utilized for short-range 
sensing. In order to detect lane lines, road signs and vehicle cameras provide a thorough picture of the 
environment, also data from many sources are combined using sensor fusion algorithms. This 
integrated approach provides accurate and reliable system’s perception. Computer Vision and Machine 
Learning (ML), especially deep learning (DL), have become increasingly important in interpreting the 
amounts of data generated by these sensors. Convolutional neural networks (CNNs) are widely used for 
their visual control capabilities to process information and identify complex patterns. These networks 
are trained on big data to identify features such as road markings, curbs and obstacles, and contribute 
significantly to traffic situation awareness. Once the environment is sensed, the ADS uses sophisticated 
planning algorithms to predict the behaviour of the vehicle. This application involves path planning, 
which includes calculating the optimal path, and speed planning, which predicts the vehicle speed and 
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direction. This model should account for dynamic objects such as moving vehicles, pedestrians and 
unexpected obstacles to ensure safe and efficient travel.   

An important feature of ADSs is edge detection, especially when it comes to lane detection, obstacle 
detection, and scene detection. Traditional edge detection techniques such as Sobel, Canny, and 
Laplacian filters have been widely used for ease of use. Computational efforts fail in unpredictable and 
complex driving situations, such as changing lighting, bad weather and difficult roads. Because CNNs 
can learn hierarchical features and patterns from large datasets, they offer great improvements in many 
ways. CNNs are well-suited for complex edge detection tasks because they can learn and extract 
features from unprocessed image. The recall metric assesses the ability of the model to detect any 
significant edges, while the precision metric assesses the accuracy of those reported edges. Processing 
speed is important for real-time applications because ADSs need to detect edges quickly and efficiently 
while making effective decisions compared to traditional edge detection methods.  
 
1.1. Anticipated Problems 

Self-driving aims to provide more comfort and convenient driving experience. Specifically, it 
attempts to reduce traffic accidents caused by human negligence of elements like lane changing, road 
dashing, and lack of recognition, all of which might be of substantial concerns. Research and 
development of ADS works on the enhancement of traffic flow, safety within roads, and reliable 
transportation options. This is vital since accidents, mainly due to human mistakes, serve as one of the 
main causes of injury and loss of lives across the globe. ADSs drastically contribute to fewer injuries by 
reducing human errors via sensors usage, Artificial Intelligence (AI), and ML algorithms. These 
systems make real-time selections to enhance driving protection and performance.  

Essential technology inside ADSs is CNN, which processes large amounts of visual statistics from 
cameras and sensors that are embedded on self-riding vehicles. CNNs could detect patterns, such as lane 
markings, street signs and boundaries. They are used in detecting lanes successfully for the vehicle to 
observe its correct lane. This functionality is crucial for self-driving cars to function in various and 
uncertain environments. On the other hand, the potential of AVs in logistics are expected to promote 
supply chains, delivery times, and decrease the overall operational costs for more efficient and 
sustainable business practices.  

However, the development of ADS is complex, and the uncertainty of the real-world environment 
brings many challenges related to reliability, safety, ethical issues, legal issues, and public trust. ML and 
CNN play a core role in promoting the adoption of ADS by enhancing the accuracy, reliability, and 
safety of ADS. The essential purpose of our research is to improve ADS where CNN and ML are used to 
design accurate lane recognition system. Our target is improving road safety and minimizing mistakes 
of drivers that may cause deviations of a vehicle from lane and hence reducing traffic accidents. This 
work’s goal is to utilize CNN to solve the previous problems and enhance the traffic performance. 
Additionally, this work is aimed at improving road networks while increasing accessibility for people 
with mobility limitations through ML strategies for better performance in different conditions. Thus, 
bringing about solutions related to issues of accessibility, traffic congestion, and road safety.  
 
1.2. Paper Objectives and Contributions  

The primary objective of this research on autonomous cars is to explore and create a novel way to 
improve the vehicles' ability to adapt in unforeseen situations. This means concentrating on reducing 
obstacles associated with making judgements in real-time, maintaining uninterrupted communication, 
and integrating sensors to continuously produce precise data for correct analysis prior to making 
decisions. In addition, the research aims to solve human error problems and advance ADS culture in a 
safe and dependable manner. 

 In addition, by identifying the best route, this study seeks to investigate other possible social 
advantages that could enhance both people and vehicle traffic safety and ease congestion. Serving people 
with mobility impairments is one of the main goals in the development of ADS technology. This plays a 
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crucial role in people’s safety and facilitates their transportation between locations without the difficulty 
of driving. To accomplish these goals, a CNN is employed for autonomous car edge detection in this 
study. One of the core tasks of Computer Vision is edge detection, which is locating the borders of 
images. Accurate edge detection is essential for activities like lane detection, obstacle recognition, and 
general picture interpretation in ADS.  

By using CNNs for this purpose, the vehicle's capacity to make deft decisions in real-time is 
enhanced by utilizing the capabilities of ML to process and analyse large volumes of visual input. 
Because driving situations in the real world are unpredictable, a system that is flexible enough to adjust 
to unexpected occurrences is required. Conventional rule-based systems frequently fall short in taking 
into consideration the multitude of variables found in typical driving situations.  

The goal of the research is to enhance the automobile’s dynamic version by using CNNs because 
CNNs can recognize complicated styles in visual inputs. Higher level decision-making algorithms that 
incorporate information from other sensors like GPS, radar, and LiDAR use the CNN's edge detection 
outputs. The integration of data guarantees a comprehensive perspective of the surroundings, 
augmenting the car's situational awareness. Steady communication between these components is made 
possible by a strong architecture that has high reliability and low latency. This architecture makes sure 
that vital data is processed and transferred quickly, enabling the autonomous system to keep a 
consistent awareness of its environment and make correct judgements in the moment.  

The key contributions in this research include advanced edge detection strategies for lane detection 
and usage of Lane Keeping Assist (LKA) structures, which are essential technologies for self-driving. 
This paper’s main contributions are as follows: 

• Advanced Edge Detection Implementation: We have implemented and modified the Sobel edge 
detection algorithm to improve its performance for lane detection under different lighting and 
weather conditions. Through trying various Gaussian filter parameters, we have developed an 
optimized edge detection system that performs well in difficult conditions such as low light or 
rainy weather. 

• Integration of ML and CNNs: The combination of CNNs and ML methods for path recognition is 
an important fundamental in our research. By building and training a CNN to detect trails in 
images, we were able to significantly increase the accuracy and reliability of trail detection 
methods. Our system can learn from big data and adapt to different driving situations using ML 
techniques. 

• Enhanced LKA Systems: We improved the vehicle’s ability to detect and track lanes with LKA 
systems by adding advanced CNN-based lane detection and edge detection techniques. Because all 
the ADSs in this combination are more reliable and safer, the vehicle can set its course with the 
same accuracy. 

• Performance Gains: Compared with current methods, the proposed methods show a noticeable 
increase in accuracy and flexibility. Our CNN-based path finding method is efficient and effective 
for real-time applications, resulting in lower processing time and increase in detection accuracy. 

• Real-World Applicability: We evaluated our strategies in simulated situations that intently reflect 
real-world driving situations to compare their applicability. Our method tested terrific upgrades 
in lane recognition precision in inclement weather and at night-time, demonstrating its 
usefulness.      

• Impact on Technology: This study results in the creation of autonomous motors which are more 
reliable and effective. We establish a basis for destiny studies and industrial programs centred at 
enhancing the safety and effectiveness of self-driving technologies by improving edge detection 
and adopting CNNs and ML along with LKA structures. 

• Future Research and Possible Directions: Our techniques are scalable and versatile enough to be 
applied to other areas of ADS, like obstacle avoidance and pedestrian recognition. By further 
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combining ML learning methods with edge detection, future research can expand on our findings 
and improve performance and flexibility under a variety of driving scenarios. 

• Social Impact Assessment: Analysing how improved ADS technologies are being adopted. One 
benefit of these enhanced automated technologies is a decrease in traffic accidents by guaranteeing 
that cars follow posted speed limits and reducing traffic yielding to less congested routes. 
Moreover, enhancing the mobility of people with physical limitations is a major factor. All these 
advancements shorten the learning curve, boost the benefits of ADS overall, and save time. ADS 
advances through ongoing research, which increases the adaptability, resilience, and capacity of 
vehicle systems to handle difficulties in unforeseen circumstances. 

This paper constitutes of the following sections. Section 2 provides a brief background about our 
work. Then, Section 3 discusses usage of Computer Vision and ML for AVs. While Sections 4 and 5 
describe the state-of-the-art literature and the adopted research methodology respectively. After that, 
Section 6 explains the simulation carried out in our work and the obtained results. Whereas, Section 7 
compares our work with other existing approaches. Finally, we conclude this paper and provide some 
future insights in Section 8. 
 

2. Background 

2.1. System Architecture 
The categorization of ADS architectures is illustrated in Figure 1 [3]. ADSs are formulated in 

either standalone configurations, functioning exclusively for the host vehicle (ego-only systems), or as 
interconnected multi-agent systems. Additionally, these design principles are implemented through two 
distinct approaches: modular and end-to-end driving approaches. 
 

 
Figure 1.  
High-level automated driving system architectures. 

 
2.1.1. Ego-only System 

The execution of driving's basic functions is essential. The vehicle’s automated driving, which may 
depend on other cars and infrastructural components, is one of the necessary functions. But strategy is 
not the only thing that the ADS relies on. It is a networked ADS, and most of its peers use the self-
approach. This is mostly because of how ADSs are developed and the extra complexity that comes with 
linked systems [4]. 
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2.1.2. Modular Systems 
Modular systems comprise a series of independent parts, each linking actuator outputs to sensory 

inputs. Perception, evaluation, planning and decision-making, mapping and localization, vehicle control, 
and human-machine interface form are the core functionalities of modular ADS. Typical modular 
pipelines start with raw sensor data fed into the localization and object detection modules and then 
progress to scene prediction and the decision-making phases. Separate development is enabled by 
breaking down this complex task of automated driving into modules, drawing on existing knowledge 
from robotics, Computer Vision, and vehicle dynamics. The real benefits of modular systems are related 
to the transferable experience in which algorithms and functions can develop and be integrated into 
such a modular framework. For example, safety can be put on top of an advanced planning module to 
enforce specific emergency procedures without modifying the architecture’s internal operations, which 
facilitates the development of redundant yet reliable architectures. However, over-complexity and the 
possibility of error propagation are significant drawbacks of modular systems. 
 
2.1.3. End-to-end Driving 

End-to-end driving is directly derived from the sensors and detectors through drive and direct 
perception. Continuously monitoring the steering wheel and pedals are required, with an emphasis on 
accelerating the car and slowing it during turns, managing turns in ego-motion. DL and AI are essential 
to this form of driving since they thwart direct monitoring of the vehicle and used in deep reinforcement 
learning (RL). Based on the requirements, limitations, and mission of ADS, all driving systems have so 
far demonstrated disadvantages alongside the benefits [5]. 
 
2.2. ADS Implementation 

The integration of ADS through modular systems comprises several essential elements [6]: 

• Plans for Sensors: Plans for sensors have a unique set of advantages and disadvantages. The 
selection of sensor arrangement is contingent upon a number of aspects related to the capabilities 
of the vehicle. 

• Software Architecture: The software architecture of an autonomous vehicle (AV) plays a critical 
role in enhancing its perception and planning capabilities, often improved through Simultaneous 
Localization and Mapping (SLAM). 

• Data Acquisition: Data acquisition is a crucial aspect of autonomous systems, with data collected 
from various sensors utilized for environment perception and decision-making. 

• Perception Algorithms: Utilized to process data obtained from sensors, perception algorithms are 
instrumental in comprehending the surrounding environment. 

• Vehicle Interfacing: This involves the interaction between the autonomous system and the 
hardware of the vehicle. 

• Failsafe and Fail-Operational Functionalities: These functionalities are integral for ensuring the 
safety of the passengers and reliability of the ADS architecture. 

• DL Applications: The growth of using DL applications in develop ADS forms the foundation for 
scene perception, path planning, and algorithm behaviour regulation. 

• Model Based Safety Analysis (MBSA): When used on an Advanced Driver Assistance System 
(ADAS), Modular Numerical Simulation is utilized. 

• System Modularity: It enhances fault-tolerant characteristics and reduces computational 
complexity.  

• Other components include: the sense component, which lets the AV perceive its environment; the 
deciding component, making decisions based on information gathered via sensors; and act 
component, acting on that decision as soon as possible.  
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All the components mentioned above should be correctly implemented, safely developed, and tested 
to a large extent to guarantee the safety of the passengers and the vehicle's reliability. In a networked 
ADSs, there are two major issues related to: 

• Requirements for Connectivity: In order to fully utilize their potential, autonomous cars need to 
have improved connectivity. High-performance clusters are arranged inside functional domains 
using complex, real-time architectures, and they are connected by a central gateway as part of a 
high-speed data backbone system. High-speed data will be more and more needed as driverless 
cars integrate complex systems that produce large amounts of data. 

• Cloud-Connected Systems: A cloud-connected ADS takes into account aspects as network delay, 
fault tolerance, and network security, ensuring robust and secure operation [7, 8]. 

• Multidisciplinary Approach: It, therefore, entails autonomous and networked systems involving a 
multidisciplinary team consisting of specialists in various domains related to ML, AI, information 
security, study, and technology development in making informed decisions. It will also comprise 
policy making and innovation of advanced sensing technologies involving human aspects. 

 

 
Figure 2.   
Levels of ADS. 

 

• Value Creation: The advent of ADS holds the potential for significant value creation for drivers, 
the automotive industry, and society at large. It has the capacity to enhance safety, convenience, 
and utilization of time on the road, benefiting various demographics, including elderly drivers. 

• Future Prospects: Industry leaders need to grasp connection in order to provide the promised 
vehicle-to-everything (V2X) capabilities of completely ADS, even though the future of AVs is still 
unclear. 

 
2.2.1. ADS Simulation Platform  

Datasets form an essential part of ADS that are used by ADS algorithms since those need training 
and testing. This is done by passing through sensory data in various algorithms, all having an intended 
goal that is often measured on annotated datasets. Primary building blocks, such as object detection and 
tracking, are standard, while other fields like Computer Vision have dedicated annotated datasets aiding 
development [6]. 

The early instances, such as the [PASCAL VOC] dataset and [KITTI] Vision Benchmark, were 
followed by more representative datasets, of which [KITTI] still provides a better reflection of driving 
scenarios. While ImageNet and COCO are suitable for training, they miss context in their image labels 
to be representative for testing ADS. Other notables include UC Berkeley Deep Drive, Oxford Robot 
Car, Cityscapes, Toronto City, nuScenes, Comma.ai, DDD17, LiVi-Set, and Common Road. Each dataset 
has its strengths, and thus, some give sensor information like LiDAR, GPS, and image sensors. SHRP2, 
100-Car study, euro-FOT, and NU-Drive are some examples of naturalistic driving datasets for driver 
behaviour knowledge. 
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Open-source frameworks can bridge business and research entities in immensely boosting the 
development of ADSs. Some notable open-sourced frameworks are effective in implementing ADS 
platforms in real-world scenarios, promoting democratization in the development, are Autoware, 
Apollo, Nvidia Drive Works, and open pilot. 

In ADS simulation, car instrumentation is replaced with expensive experiments that overcome some 
constraints needed for road testing. Simulation frameworks like CARLA focused on urban driving [9]; 
TORCS, racecourse simulation; or Gazebo, oriented to robotics, serve as a base where algorithms can be 
tested before modules are applied onto the road. It will, moreover, be easy to replicate dangerous 
situations like collisions with pedestrians and investigate them.  
 
2.2.2. ADS Levels 

Several organizations, including German Association of Automotive Industry (VDA) and Society of 
Automotive Engineers (SAE), have categorized ADS into distinct stages. There are five levels of 
automation shown in Figure 2 [10]: Level 0 (no automation) to Level 5 (complete automation). The car 
has no automatic features at Level 0.  

Automatic braking and other driver assistance features are introduced at Level 1. The car can 
accelerate and brake at Level 2, but the driver has to stay alert and prepared to take over at any time. 
Under some circumstances, Level 3 cars can function independently, allowing the driver a little window 
of time to take back control if needed. The High levels of automation are possible with Level 4, allowing 
the car to operate autonomously in many driving situations. At Level 5, the car is fully automated, able 
to handle every part of driving under any conditions.  

Commercially available AVs have not yet achieved automation levels higher than Level 2 or Level 3. 
Leading the charge in the development and testing of AVs, automakers Tesla, have been approved by 
regulatory organizations in a number of locations, including Nevada in the United States and several 
European nations, subject to certain restrictions. Modern developments in AVs have their roots in the 
early experimental models, including those created by Carnegie Mellon University in the 1990s. 
Autonomous taxis are being developed and tested by ride-sharing services such as Uber and Lyft. 
Singapore concluded an autonomous taxi test in 2018 [11]. Numerous safety advantages could result 
from autonomous cars, major among them the prevention of accidents Guo, et al. [12] and death caused 
by human error — human error accounts for 90–95% of all car accidents.  
 
2.3. Current Situation 

The integration of data from several sensors, including radar, LiDAR, and cameras, enables sensor 
fusion techniques to create a full picture of the environment around the vehicle. This integration makes 
driving in difficult situations less likely to go incorrect and increases overall dependability. But since 
AVs produce enormous amounts of data that could be hacked and misused, data security is still a major 
issue. The development and implementation of AVs should carefully examine ethical, legal, and 
technological difficulties, even though they hold great promise for enhancing road safety and efficiency 
[13, 14]. It is important to assure the reliability and security of AVs. For example, predictive analytics 
can detect irregularities in sensor data and predict traffic patterns, enabling AVs to develop 
countermeasures to prevent collisions.                               

Furthermore, AI systems assure that if a system fails, others can compensate, maintaining overall 
vehicle safety. For AV technology to advance and be implemented safely and effectively, it is imperative 
that ML, Computer Vision, and sensor fusion techniques be integrated [15]. Due to developments in 
ML, AVs can now identify trends and make judgements in real-time by utilizing up-to-date data. CNNs 
and other DL methods enable AVs to quickly adjust to new conditions by learning from historical data 
[16]. Comparably, Computer Vision technologies are essential to AVs’ ability to "see" and comprehend 
their surroundings more fully. These systems analyse photos and videos taken by the car's cameras to 
recognize traffic signs, people, barriers, and other important factors that influence driving decisions. 
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3. Methodologies for AVs 

Advancements in Computer Vision is essential to the development of ADSs. CNNs, in particular, are 
essential to ML because they enable the recognition and interpretation of visual data from the 
environment around the vehicle. To reliably identify lane markings, traffic signs, pedestrians, and other 
impediments, CNNs are trained on big datasets.  

Furthermore, the vehicle’s capacity to identify lane edges and other essential features is improved by 
the application of edge detection techniques like the Sobel operator. Gaussian filtering ensures 
robustness in diverse contexts by significantly enhancing edge detection efficiency across a range of 
situations. 

 
Figure 3.  
Choosing the suitable trajectory. 

 
Path prediction and ML techniques have made significant progress in the field of AVs. With a 

particular focus on these technologies usage in AVs, this study identifies important themes and current 
advancements in research. 
 
3.1. Path Prediction 

ML plays an important role in improving AVs prediction as traditional methods have been 
significantly enhanced by ML techniques. Especially DL-based techniques, which make use of enormous 
datasets and complex algorithms, have demonstrated impressive performance in forecasting vehicle 
paths. For example, some studies offer an overview of motion prediction and risk assessment methods 
utilized for AVs.   

DL-based car behaviour prediction has become more popular in the last several years. These 
methods improve vehicle behaviour analysis. Recurrent neural networks (RNNs) and long short-term 
memory (LSTM) networks are examples of sequential models that have been used extensively to 
capture temporal dependencies in trajectory data. Time-series data processing, which is essential for 
precise trajectory prediction in dynamic driving settings, is a specialty of these models [17]. 
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3.2. Trajectory Prediction  
Trajectory Prediction is the process of projecting moving objects' future positions from their 

historical and current conditions as shown in Figure 3 [18]. This can be achieved by several methods, 
such as DL techniques, statistical models, and physics-based models. While probabilistic models, such as 
Gaussian Processes and Hidden Markov Models, incorporate uncertainty into their predictions, physics-
based models use laws of motion to forecast future positions. These predictions are further refined by 
DL techniques via use of neural networks to learn from vast datasets.    

CNNs have successfully improved Trajectory Prediction and also have dramatically changed the 
field of Computer Vision. They work effectively on jobs involving spatial data, such pictures and videos. 
CNNs are used to analyse complex images and predict the future paths of objects inside those scenes by 
utilizing their capacity to automatically detect and learn spatial hierarchies from raw pixel data. 

Furthermore, predicting human movements and interactions with vehicles is one prominent use of 
CNNs in AVs. In order to forecast pedestrian trajectories in urban contexts, for instance, some works 
suggested a CNN-based framework that examines the spatial interactions between pedestrians and cars. 

 

 
Figure 4.  
CNN Architecture Framework. 

 
This method makes use of the convolutional layers to extract high-level features from image data, 

enabling the model to understand intricate details of pedestrian behaviour and make accurate 
predictions. Different traffic participants' interactions and geographical linkages are captured using 
CNNs and Graph Neural Networks (GNNs). These techniques work especially well in urban settings 
because there are a lot of moving parts and intricate interactions between cars, customers, and other 
objects. 

 
3.3. Object Detection and Scene Perception  

Developments in DL, ML, and AI have played a major role in the development of AVs. Object 
detection is a vital component of AV technology that helps the car recognize its surroundings. The 
capacity of CNNs to learn and extract hierarchical features from visual data has made them an essential 
component for this goal. AVs need object detection in order to identify and locate different items in their 
environment. Three stages make up the procedure in general: feature extraction, region proposal, and 
classification.  
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3.3.1. Region Proposal/Region Selection 
To scan the full image at several scales, region proposal methods such as window sliding were 

initially used. Unfortunately, this approach requires a lot of processing power and so is not appropriate 
for real-time use in AVs. By directly producing region proposals from the convolutional feature maps, 
contemporary methods like Region Proposal Networks (RPN), which are used in Faster Region-based 
CNN (R-CNN), have increased efficiency.  

Conventional techniques for feature extraction such as the Haar-transform and Histograms of 
Oriented Gradients have become popular but not very resilient to changing environmental conditions. 
By deriving spatial hierarchies of features from raw pixel data, CNN algorithms have transformed 
feature extraction and increased adaptability to the dynamic situations that AVs encounter [19].                   
 
3.3.2. Classification 

ML methods are used to classify things after features have been extracted. Prior to the development 
of DL, methods like Support Vector Machines (SVM) and the Deformable Parts Model (DPM) were 
frequently employed. These days, CNN-based models are more popular because of their better 
performance and ability to learn from start to finish.  
 
3.3.3. Object Detection  

In Computer Vision, CNNs have proven essential, especially for object recognition in AVs and 
image categorization. Multiple layers make up CNNs as shown in Figure 4 Ammar, et al. [20] which 
perform feature extraction by using supervised learning to acquire increasingly complicated features. 
Advanced CNN architectures, including Very Deep CNN (VGGNet), Dense CNN (DenseNet), and 
Residual CNN (ResNet), have been used to improve accuracy of object detection in AVs. 

Well-known DL models for real-time object identification include You Only Look Once (YOLO) 
and Single Shot Multibox Detection (SSD). By adding more convolutional layers to intermediate layers 
of a pre-trained network, SSD efficiently addresses the issue of scale fluctuations and combines object 
detection tasks into a single network. To achieve a balance between speed and accuracy, YOLO splits 
the image into a grid and forecasts bounding boxes and class probabilities for each grid cell. 

LSTM networks are one type of RNN that has been used for sequence prediction tasks like visual 
tracking in AVs. By preserving a recollection of prior time steps, these models are able to capture 
temporal relationships, which is essential for forecasting the trajectory of moving objects [21]. 

Other DL architectures found in AVs are Deep Belief Networks (DBNs) and Stacked Auto Encoders 
(SAEs). DBNs are made up of several layers with latent, stochastic variables that are greedily learned 
layer by layer. Although they are less popular than CNNs for object detection, they are efficient at 
learning high-dimensional representations. The ability of SAEs, on the other hand, to encode input data 
into a lower-dimensional representation through unsupervised learning makes them useful for feature 
extraction in AV vision systems. However, unsupervised learning and SAEs are out of scope of this 
paper. 
 

4. Literature Review 

4.1. Existing Methodologies 
The existing methodologies include avoidance of occlusions, changes in light, and adverse weather 

conditions. DL models will also need continued improvement and integration with multimodal sensor 
data to produce human perception and cognition capabilities in an AV. Some of these methodologies are 
discussed below as follows: 

• Occlusions and Partial Visibility: Occlusions, where an object is partially or fully hidden by 
another object, is one of the biggest problems with object detection for AVs. To make them more 
secure, CNNs need to be trained on datasets that have occluded objects. Bad Weather, such as 
snow, fog and rain can disable AV sensors and the DL models that come with them. Using sensor 
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fusion methods which combines data from LiDAR, radar and cameras can help develop a more 
robust perception system [22]. Future research should focus on making the DL models more 
robust and generalizable to different driving scenarios. Transfer learning has shown to improve 
object detection by fine tuning pre-trained models on AVs datasets.  

• Introducing AI and ML for AVs: The most significant transformation of present transport 
systems is the adoption of AI and ML in different forms of AVs. It is remarkable when discussing 
AVs that ML in general and DL techniques specifically have turned out to be critical to the 
formation and activity of AVs. The purpose of these technologies will focus on the role and the 
importance of the technologies, the challenges, and the opportunities that exist in the ADS field. 
Since the fundamental concept of AVs is based on the vehicle’s capability to drive the car and 
sense the environment, these technologies enhance the efficiency and safety of the car [23].   

Perception and Awareness of the Environment: These are among the most paramount functions 
utilized by the AVs in that it puts them in a position to understand as well as comprehend features of the 
environment they are surrounded by. That involves usage of  devices such as LiDAR sensors, radar 
sensors, and cameras that capture objects and data, data which undergoes filtering by AI algorithms. 
Here, the importance of CNNs means clear shape and does good work in such aspects as item 
identification and detection. In images and videos analysis, CNNs are helpful; they could be applied to 
such activities as recognizing traffic signs which have different features of a different nature and lay 
lines on the road, and analysing other moving objects in the traffic. 

 

 
Figure 5.  
Path planning and decision making.      

 

 
Figure 6.  
Mapping and localization. 
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Environmental perception in the identified domain of AVs consists of object recognition of 
pedestrians and understanding of intricate traffic scenarios. Other more advanced structures of DL used 
in the modelling of the real world include RNNs that are used in the simulation, and Generative 
adversarial networks (GANs) that are used in the prediction of movements by the walker that challenge 
the AV systems as well as the generation of possible scenarios in a real-world environment. 

• Path Planning and Decision-making: AVs benefit greatly from AI in another important area. 
The terms decision-making, organizing, commanding and coordinating are used in a significant 
manner when it comes to human resource management. AV driving decisions that allow for 
decision-making in real-time and the provision of judgments needed for safe operation depend 
on ML as depicted in Figure 5 [24].        

• Local Path Planning: It determines the best motion of the car and its path to go through. AI 
techniques are usually used in solving such problems using Rapidly Exploring Random Trees 
and A* search. These algorithms aid in the generation of available paths that ensures an entity 
goes through without hindrances or barriers. In parallel, some methods of sensor fusion provide 
the construction of information from different sensors, improving the reliability and accuracy of 
the route.  

• Mapping and Localization: Accurate mapping and local navigation of AVs, depicted in Figure 6, 
are essential. High-definition maps blended with AI algorithms permit AVs to recognize their 
environment with high precision, facilitating higher navigation and obstacle avoidance [14]. 
ML models use AI-powered techniques such as SLAM to create and update maps in real-time by 
tracking vehicle conditions within these maps.                                                                                                                                                         

 
4.2. Current Technologies 

One essential element of ADS is LKA systems, which work to improve road safety by reducing 
accidental lane departures. A comprehensive overview of ADS is given in Yurtsever, et al. [3] which 
emphasized the need for reliability and the possible social effects of wide adoption. The development of 
ADS technology, system architectures, hardware, sensors, and the challenges of driving automation are 
discussed as follows: 

• Perception and Sensor Fusion: investigate how perception tasks in ADS can benefit from the 
combination of LiDAR and video data. Though multi-modal sensor fusion is their main focus, the 
concepts also apply to LKAs, which use camera data for lane detection. Although there is a crucial 
need of multi-modal integration, camera-based perception is prioritized in the context of LKAs to 
reliably recognize lane markers. 

• 3D Object Detection and Semantic Segmentation: concentrate on 3D detection in ADS, 
emphasizing its use in path planning, collision avoidance, and motion prediction. Accurate lane 
detection is the main priority for LKAs, even though 3D detection is essential for overall vehicle 
safety. Camera-based image-based techniques are crucial for lane recognition boundaries and 
other road features. There are challenges in aligning semantic information across different 
modalities needed when integrating camera data with other sensor inputs. 

• LKA using PID Controller and PID Management: In LKAs, a proportional-integral-derivative 
(PID) controller is usually used to keep the vehicle on a specified path. The PID controller adjusts 
the steering angle based on the difference between current vehicle position and desired navigation 
position. This approach keeps the car on track and provides smooth, fluid handling. PID 
controller is a highly desirable product for LKAs due to its efficiency and simplicity. 

• Adaptability and Performance: PID controllers work well in straightforward, predictable driving 
situations, but they are not as good in more dynamic ones. They might be sensitive to noise and 
disturbances and need to be precisely tuned to accommodate different road conditions. PID 
controllers are resilient when correctly adjusted, despite these drawbacks, making them 
appropriate for many LKAs applications. 
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• CNN for LKAs: CNN functions in lane detection: CNNs are needed for the purpose of processing 
and evaluating images from cameras in LKAs. Also, they are trained on large datasets to identify 
patterns and features such as road markings, road signs and obstacles. This assures that the 
vehicle will remain on the intended course by providing accurate road visibility. CNNs provide a 
reliable classification and extraction method, so increasing the reliability of LKAs.  

• Edge Detection and Feature Extraction: Edge detection techniques—such as the Sobel operator—
are widely used in CNN to improve the ability of a vehicle to detect road edges. These techniques 
enhance the robustness and recognition of CNNs under different conditions. By improving the 
capture of objects from camera images, edge detection helps CNN detect lane boundaries more 
accurately, contributing to the overall effectiveness of LKAs [25]. 

• CNN and PID Controller: can be integrated to take benefit of the advantages of both systems. 
PID controllers provide quick and smooth steering modifications, while CNNs enable reliable and 
accurate lane detection. Because of this integration, LKAs are guaranteed to function well in a 
variety of driving scenarios, so maintaining lane position correctly and consistently. A complete 
LKA solution is produced by combining CNNs for perception along with PID controllers.      

 
4.3. State-of-the-Art Approaches 

The authors in Mao, et al. [26] provided an extended technical background on ADSs challenges 
and promises. They elaborated on the robustness demanded by ADS and the possible societal impact in 
case a massive number of vehicles exist. In their research, they mentioned the historical backdrop of 
automated driving, covering important works that have been ongoing for decades and shaped today's 
state-of-the-art ADS technology. The paper presented system architectures, hardware, and sensors and 
discussed driving automation complexity. It further described various components and how ADSs are 
designed. Some problems were discussed that arise from dark scenes, objects that look different, also 
how methods of 3D object recognition were mentioned as a solution to these problems. The paper 
discussed perceptual tasks in ADS, mainly 3D object detection and semantic segmentation related to 
image-based object detection. They described the development of perception algorithms such as camera-
based perception, and event camera-based vision. Furthermore, perception-related issues like lighting 
change and development in 3D were presented. 

The survey in Huang, et al. [27] examined LiDAR and video data perception tasks in ADS. The 
approach catered to problems resulting from noisy raw data, underutilized information, and mismatch of 
multi-modal sensor data. In Huang, et al. [27] the fusion techniques were categorized into two 
significant categories which are Weak and Strong Fusion, each further divided into four smaller groups. 
Also, the research provided an in-depth review of more than fifty relevant studies, and classified them by 
fusion stages then reviewed them against open issues and future research directions. The study noted 
the limitation of single-modal data; and how LiDAR technology and camera data complement each 
other in a way that results in multi-modal integration; highlighted perception tasks in ADS. They 
authors in Huang, et al. [27] also included some popular open test datasets for ADS perception tasks 
such as Waymo, KITTI, and nuScenes. They gave representations of LiDAR and image data. Point-
based, voxel-based, and 2D mapping-based point cloud representations were presented alongside fusion 
methodologies, such as early-fusion, deep-fusion, late-fusion, and asymmetry-fusion. Experimental 
results on the KITTI test dataset for bird’s eye view (BEV) and 3D object detection tasks were 
discussed and performance of various fusion methods were compared too. 

In Caesar [28] the authors presented nuScenes dataset as the first holistic dataset of all car sensors, 
including camera, radar, and LiDAR, and contains one thousand scenes of twenty seconds each. Each 
dataset has annotations for 3D bounding boxes for twenty-three classes and eight attributes with 
precise metrics introduced for 3D tracking and detection. They pointed out the importance of 
multimodal datasets by citing the fact that no single sensor type is sufficient, and they are 
complementarity. The study investigated the difficulties in the construction of perception systems 
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regarding ADS and provided emphasis on the need for benchmark datasets for training and evaluation 
of ML methods. Also, the presented nuScenes dataset, which is large in terms of size and complexity, 
provides a baseline for object detection and tracking and illustrates LiDAR and image-based methods. 
In Caesar [28] a discussion of the role of pre-training and multiple LiDAR is given along with the 
detection performance. The paper mentioned how vital the matching function could be in impacting the 
ranking results of the detection methods. The experimental results of the detection and tracking works 
were reported to evaluate the performance of LiDAR-based versus image-based detectors. For the 
nuScenes dataset, it has already garnered much attention in the community of AVs and has been applied 
in various research.  

Whereas in Ren and Yin [29] authors contributed a comprehensive review restricting 3D detection 
into the true scope of ADSs, which form a vital module for collision avoidance, motion prediction, and 
path planning. They identified some of the significant 3D object detection challenges, including 
recovering depth from images, learning from partial occlusions in point clouds, or aligning semantic 
information across modalities. In Ren and Yin [29] authors presented point cloud-based methods that 
mostly rely on LiDAR sensor data and exhibits higher accuracy and lower latency compared to image-
based methods. To deal with the challenges of representation and processing of sparse, irregular, and 
unordered point clouds, they applied voxel-based and point-based methods. They also explored a point-
voxel-based method that embodies both voxel and point-based methods. The research studied 
multimodal fusion-based approach to exploit the complementarity in different modalities like images 
and point clouds. Fusion methods with sequential and parallel approaches were considered in the work 
concerning sub-fashion sequential data flow and parallel data flow sets of the modalities as they pass 
through networks. On the one hand, the study indicated that point cloud-based methods are more 
accurate thanks to LiDAR sensor data. On the other hand, they are challenged by sparse, irregular, 
unordered point clouds in processing. In contrast, image-based methods operate based on visual 
information from cameras; they are cheap and interpretable but lack depth information. The paper 
enumerated the strengths and limitations of each technique but illustrated how they could work 
together effectively to attain 3D object detection for ADS.  

Besides that, the work in Cui, et al. [30] presented an analysis of using DL techniques for camera-
LiDAR fusion and image and point cloud data fusion in ADS. The authors provided a full review of 
techniques ranges from depth completion to object detection, semantic segmentation, and tracking. 
They tackled the trends in fusion methodologies: from 2D to 3D, from single-task to multi-tasks, and 
from signal-level to multi-level fusion. The research highlighted the current fusion pipeline needs to 
improve feature representation, integrate geometric constraints, and leverage temporal context. In the 
context of 2D/3D semantic segmentation, they described all the significant methods to fuse image and 
point cloud data under feature-level and result-level fusion. The feature-level fusion is when combining 
point cloud and picture features at the feature level. Techniques, such as multi-stage feature-level fusion 
and NASNet-based auto-encoder networks, are applied for 2D semantic segmentation. For 3D semantic 
segmentation, methods like 3DMV or UPF use both point cloud and multi-view image data and 
combine them after estimation of semantic labels per pixel or voxel. Result-level fusion involves data 
aggregation at the result-level and often helps leverage off-the-shelf 2D object detectors to narrow the 
3D object detector's region of interest. Thus, it reduces computations by processing fewer regions of 
interest. Some examples are the frustum-based techniques such as F-Point Nets, Roar Nets, LiDAR 
Stereo Nets, etc. These algorithms project 2D bounding boxes into a 3D space for 3D object detection. 

Finally, AVs can be a fascinating development, which could significantly reduce traffic accidents and 
fatalities; these are caused mainly by human error—speeding, intoxicated driving, and distracted driving 
[31]. At the very time, there exist many technological, legal, and ethical challenges that affect AVs and 
their comprehensive implementation. 
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5. Proposed System 

The technology for ADS has been advanced because of the integration of ML techniques, with a 
special mention of CNN. This research implements edge detection and LKA using CNN with datasets 
[32]. Our goal is to improve perception and control systems in the AVs for safer and more efficient 
movement. This section focuses on the techniques and tools used in our work, such as MATLAB and 
Simulink. 
 
5.1. Data Acquisition  

Developing efficient CNNs for edge detection in AVs using structures starts with records 
accumulation that impacts the performance and generalization capabilities of the trained models. The 
essential factors of information gathering are described below: 

• Kaggle dataset: Dataset from Kaggle available at 
“https://www.kaggle.com/datasets/alincijov/self-driving-cars” is used for this work due to its 
accessibility and comprehensiveness. This dataset contains labelled images that capture 
information about the driving environment.  

• Image information: High-quality images are essential to capture details in the environment. The 
dataset we used provides a range of driving profiles, ensuring that the CNN models are trained on 
different datasets. 

• Labelled data: The adopted dataset comes with descriptions that label features which is important 
for supervised learning. Labels include numbers from 1 to 5 that correspond to 'car', 'truck', 
'pedestrian', 'bicyclist', and 'light' respectively. 

 
5.2. Data Collection 

The use of CNN for edge detection present several challenges, such as optimizing the training data. 
For the training to be effective, it is important to ensure a consistent and diverse set of data. To 
overcome this, we use rotation and inversion methods for data. One other major challenge is managing 
the quality of the training data. Ensuring that the dataset is diverse and accurately labelled is essential 
for effective training. We address this by using data augmentation techniques, such as flipping, rotating, 
and adding noise to the images, to create a more robust and varied training set. The main techniques 
used for data collection include the following: 

• Sensor Integration: This relies on picture statistics collected from various riding scenarios. The 
sensors involved encompass cameras that retrieve information contained within the forms of 
photos. Large pixel applications are required for intending excellent edges as well as information 
within the environment. 

• Manual Annotation: The edges and functions contained in the compound of pixels are labelled by 
human annotators. This procedure minimizes possible errors that may occur during extraction of 
features for side detection and is critical step in training of CNN models. 

• Data Pre-processing: Pre-processing of the raw data involves cleaning, normalization and 
transformation to enhance its performance in the models in the train of CNN. This involves initial 
data cleaning, normalization, feature augmentation followed by dataset partitioning into training, 
validation and test sets. 

• Data Cleaning: The process involves removing incorrect files, filling in incorrect labels, and 
ensuring all data points are correctly annotated. This step is essential to maintain the integrity of 
the dataset. 

• Normalization: Normalizing the image data to a consistent range of pixels’ values (typically 
between [0, 1] or [-1, 1]) helps accelerate the training resolution for CNN and improves model 
performance by ensuring uniform input to the networked CNN. 

https://www.kaggle.com/datasets/alincijov/self-driving-cars
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• Data Augmentation: This includes rotation, scaling, translation, and flipping. These are 
techniques in data pre-processing that help and improve the diversity of the training dataset in 
CNN trained model. Data augmentation improves model generalizability by exposing it to a 
broader range of environments.  

• Edge Detection: It is an important step in self-driving cars in analysing the vehicle's environment 
since it identifies lane detection, road limits, and other vital elements. One of the techniques used 
is the Sobel operator for edge detection due to its efficiency and effectiveness. 

• Sobel Operators: The Sobel operator computes the gradient of image intensity at each pixel, 
highlighting areas with high spatial frequency that correspond to edges. It employs two 3x3 
convolution kernels to compute the gradient in the x and y directions. This is implemented using 
MATLAB by employing the Sobel filter to detect edges in grayscale images. The resulting 
gradient magnitude image detects the edges for the vehicle, and is utilized as input for additional 
processing in lane detection and LKA.  
 

 
Figure 7.  
PID controller architecture. 

 

• Gradient Calculation: By convolving the image using Sobel kernels, the gradient in the x and y 
directions is determined to highlight the image's edges. Edge detection using the Sobel operator is 
essential for lane detection and object recognition as it gives a clear representation of the 
structural characteristics in the picture, allowing the autonomous system to accurately recognize 
lane boundaries and obstructions. 

• Lane Detection: It uses the Hough Transform and edge detected in the road that AV moving on it 
to determine the actual lane markings. This step is critical for preserving the vehicle's place 
within the lane which assists the LKA feature. 

• Hough Transform: The Hough Transform is used to identify straight lines in the edge detected 
for the road. It operates by mapping points in the image space to the Hough space and identifying 
lines based on parameter values even in the presence of noise. Peaks in the Hough space represent 
potential lines in the image. The Hough Transform is noise-resistant and can detect lines in a 
variety of different scenarios, making it excellent for identifying lane markers on road. This is 
critical for dependable lane keeping, especially in adverse conditions. 
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5.3. PID Control  
The PID control is a fundamental control technique that is used in a multiple and different 

technologies for ADS which include LKA in AVs. It is supposed to keep the car in its lane by constantly 
modifying the steering depending on feedback from the identified lane boundaries on the road. The PID 
controller, shown in Figure 7 Bhookya, et al. [33] calculates the steering angle by taking the angles 
into account, and the difference between the vehicle's present and desired positions (the lane centre) for 
the AV. This control mechanism enables smooth and responsive steering adjustments for vehicle, which 
improves the vehicle's ability to remain centred in its lane boundaries in the road. Below is an 
explanation of the role of PID control in LKA that is one of the most important technologies in ADS 
[34]: 
 
5.4. Proportional (P) Control 

• The proportional term generates an output according to the present error value. It computes an 
ideal steering angle based on the vehicle's deviation from the lane centre.  

• The integral term is the accumulation of past errors. 

• All the errors are summed up from the previous step over time which produces a corrective action 
that accounts for the cumulative error.  

• This helps to eliminate steady-state errors that proportional controller alone cannot handle. 
 
5.5. Derivative (D) Control 

• The derivative term predicts future error from the steering based on its rate of change. 

• It produces a corrective action proportional to the rate of change of the error, helping to damping 
oscillations and improving stability. 

The total PID control output is a sum of proportional, integral, and derivative values. The PID 
controller calculates the steering angle by adding these three components.  
 
5.5.1. Role of PID Control in LKA  

• Error Calculation: The first step is to measure the error of line, which is the difference between 
the AV’s current position and the centre of the lane. This error serves as the input to the PID 
controller. 

• Proportional Action: The proportional term makes correction based on current errors that come 
from the first step. If the car is far from the lane centre of the line, the proportional action causes a 
higher corrective steering angle to bring the car back to the centre.  

• Integral Action: The integral term accumulates error over time. If the AV has been repeatedly off-
centre, the integral action changes the steering to fix the accumulated error and return the vehicle 
to the lane centre.  

• Derivative Action: The derived term predicts the future trend of errors caused by the vehicle by 
measuring the rate of change. When the vehicle is accelerating off centre, the resultant action 
creates a damping effect, reducing corrective action to prevent overthrow and vibration. 

• Control Output: The PID controller sums the outputs of the proportional, integral, and derivative 
actions to compute the final steering angle. This steering angle is then applied to the AV’s 
steering system to adjust its direction between lanes to make LKA for ADS. 

 
5.5.2.  Importance of PID Control in LKA 

The PID control provides smooth and rapid steering adjustments, which are critical for keeping the 
car in the lane. This ensures a safe and comfortable driving experience by reducing the likelihood of lane 
deviation and collisions. The PID controller continuously reacts to changes in the vehicle's position and 
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the road environment to help the AV to be between the two lines of the LKA, allowing for accurate 
control of the vehicle’s trajectory. 
 
5.6. CNN for LKA  

In the era of AI and DL, AVs have become a focal point of research and development. The primary 
goal of these efforts is to enable AVs to make decisions for hazard avoidance. One of the most critical 
approaches in training AVs is the use of DL and CNNs [35]. These techniques play a crucial role in 
ensuring that AVs can accurately stay in their lanes on public roads by fully perceiving the surrounding 
environment and identifying the lanes around the vehicle.   

The CNN architecture use has a couple of convolutional layers, each is intended to extract 
numerous feature levels from the enter images. The series layers that come after these decrease the 
spatial dimensions of the information while preserving the necessary facts to make the community more 
computationally powerful. To guarantee robustness and generalizability, the community is trained on 
an extensive dataset of road images, encompassing a variety of driving conditions. Through this 
training technique, the community's weights are modified to reduce detection errors and enhance the 
precision of lane detection so facilitating decision-making in real-time based on sensory inputs. So, 
CNNs can give correct and timely information about the surroundings across the car.  

The structure of our proposed CNN model consists of several convolutional layers, each followed by 
activation functions and pooling layers. The initial layers focused on identifying low-level features, such 
as beach textures, while the deeper layers had more complex shapes, including road markings, road 
boundaries and obstacles. The final CNN layers are designed accordingly to provide an accurate coastal 
map, which highlight critical areas of need for safe navigation.  

Our proposed system utilizes a camera to capture the area around the vehicle and examines the 
perception plans. This approach is embodied in the LKA system. The primary function of LKA is to 
ensure that the vehicle maintains its lane. By leveraging advanced perception technologies, the vehicle 
can detect and follow lane markings, thus maintaining its path and avoiding unintended lane departures. 
As the depth of a CNN increases, elaborated in this structure, it gains the capacity of learning many 
features and patterns of different levels of hierarchy. In the first layers, the structure finds pragmatic 
primitive geometries within a picture including edges, possible simple textures and the like. As this data 
enters the deeper layers of the network, it starts to recognize increasingly higher levels of patterns such 
as shapes and forms of objects encountered. For instance, the initial layers might identify the edges of 
objects, while later layers might see further details such as the leaves that compose the trees or the 
individual elements of a car’s tires. This hierarchical feature extraction makes CNNs well suited for 
application in autonomy of vehicles, especially AVs because a vehicle has to understand the environment 
as it tries to interpret what it sees. By capturing and processing such segregated information, CNNs 
enable featured recognition and perception of the environment by the AVs, proper identification of 
objects within this environment as well as balanced and informed driving decisions within this 
environment. This capability makes CNNs a preferred algorithm in the creation of AV inventions since 
most organizations would prefer to deal with a reliable and dependable algorithm [36]. 
 
5.7. CNN for Edge Detection 

The CNN layers are built on the convolutional layer, which scans the input image and generates 
feature maps using convolutional filters (kernels) [37]. The community’s capability to precisely perceive 
edges below a range of situations, which includes various lighting, climate, and sorts of roads, ensures 
that self-driving can depend upon correct records and selections. Below is an explanation of how this 
process works: 

• Convolution Operation: A convolutional filter (a small weight matrix) is applied to the input 
image. At each point, the filter conducts element-wise multiplication and adds the results, 
producing a single value in the output feature map. This operation is repeated for full image. 
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• Edge Detection Filters: Filters are intended to respond aggressively to regions with a high 
intensity contrast, such as edges. Examples of such filters include the Sobel Filter. 

•  

 
Figure 8.  
Bird’s eye view for ADS. 

 

• Activation Functions: After the convolution process, the result is sent through an activation 
function, often known as the rectified linear unit, introducing nonlinearity into model. 

• Activation: This converts all negative values in the feature map to zero, allowing the model to 
learn complicated patterns and features by stacking many layers. 

• Pooling Layers: These minimize the spatial dimensions of feature maps while keeping the most 
critical data. This method is known as down sampling or subsampling. 

• Max Pooling: It is the most frequent method that extracts the maximum value from each region 
of the feature map, highlighting the most important qualities (such as edges) while reducing 
computational complexity. 

• Hierarchical Feature Learning: As the image moves through many convolutional and pooling 
layers, the CNN learns hierarchical characteristics.  

• Early Layers: These layers usually detect low-level features like edges, lines, and corners. 
Intermediate layers integrate the low-level information to recognize more complex patterns and 
forms. 

• Deeper Layers: They identify high-level, abstract features such as individual things or sections of 
objects. 

 

6. Simulation and Results 

Using modern hardware accelerators, inclusive of Graphics Processing Units (GPUs), which 
dramatically speed up the computation, will increase the CNN’s capacity for real-time processing. As a 
result, the automobile can react fast to dynamic adjustments consisting of CNNs with additional 
computational and sensory. In our work, training deep CNNs required significant processing power and 
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memory. To overcome this, we utilized cloud-based GPU resources, which provided the necessary 
computational capabilities. 
 
6.1. Bird’s Eye View  

The bird’s eye view shown in Figure 8, also known as top-down view, is an important perspective in 
ADS. It transforms road layout into a bird’s eye view, and then detects the edges of the road within that 
transformed image using the Sobel edge detection method and Hough transform. We provide the bird’s 
eye view code we used in Figure A1. The bird’s-eye view is crucial for ADS applications where 
understanding the road layout from an overhead perspective is important for navigation and LKA. The 
importance of Bird’s Eye View in ADS is due to the following reasons: 
 

 
Figure 9.  
Different types of filters. 

 

• Enhanced Spatial Awareness: Offers a complete and clear view of the vehicle's surrounds, which is 
essential for navigation and avoiding obstructions. 
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• Accurate Lane Detection: Assists in accurately identifying lane lines and keeping the car in its 
lane. 

• Improved Path Planning: Helps to design paths around obstacles with high precision, resulting in 
smoother and safer travel. 

• Integration of CNNs: The bird’s-eye view gives valuable data for CNN training, so enhancing its 
capacity to detect features and make top-down choices. 

 
6.2. Dataset Filtering  

The filtering for dataset or road makes various edge detection filters as shown in Figure 9, each of 
which contributes to the enhancement of image features in its own distinctive way. These improvements 
are crucial for CNNs because they establish an effective basis for hierarchical feature extraction and 
improve image processing accuracy. Integrating edge detection with CNNs improves training efficiency, 
feature relevance, and overall performance in real-world applications, making it critical pre-processing 
step in ADS and other Computer Vision tasks. 
 
6.2.1. Applying Filters  

The code in Figure A2 reads an image from dataset and displays it with the title “Original Image” to 
detect. Then, the image is converted to grayscale, which is a necessary step for many edge detection 
algorithms. After that, the following filters are applied: 

• Sobel Filter: It is applied to detect edges by emphasizing regions of high spatial gradient. 

• Prewitt Filter: It is another edge detection filter that highlights edge by detecting horizontal 
and vertical gradients. 

• Roberts Filter: It is used for edge detection by calculating the gradient of the image intensity at 
each pixel. 

• Canny Filter: It is a multi-stage edge detector that is popular due to its reliability and precision 
in detecting edges. 

 
6.2.2. Importance of Filters in Edge Detection  

• Sobel Filter: It detects changes in intensity, which makes it useful for emphasizing edges. The 
Sobel Filter exhibits directional sensitivity, that is, it is sensitive to both horizontal and vertical 
edges, yielding a comprehensive edge map. 

• Prewitt Filter: It performs simple gradient calculation. The Prewitt filter is simple and effective 
for detecting edges, particularly in images with significant intensity shifts. Prewitt filters are 
computationally efficient, which makes them ideal for real-time applications.  

• Roberts Filter: It has high precision. Roberts filters detect edges with great precision, particularly 
small details, making them ideal for detailed image analysis. They are more susceptible to noise, 
which can be reduced using pre-processing processes. 

• Canny Filter: It provides multi-stage detection that incorporates noise reduction, gradient 
calculation, non-maximum suppression, side monitoring and hysteresis usage, resulting in 
remarkable aspect detection. Its strength is that it withstands noises and changing illumination 
situations, making it best for difficult picture evaluation jobs. 

 
6.3. LKA Simulation with Control 

The lane keeping code is intended to do lane detection and then help in LKA for AVs via edge 
detection and the Hough transform. This code uses an image to recognize lanes and calculate the 
necessary steering angle. The major control mechanism proposed for future iterations is varying the 
steering angle based on the vehicle's position relative to the detected lane. The LKA code outlines a 
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method for detecting lane boundaries using edge detection and the Hough transform, which is crucial 
for developing an LKA system. 

The AV detects the lines and edges and moves between the detected edges (line boundaries). The 
PID control is an essential method in ADS, including LKA, which involves continuously modifying the 
steering based on feedback from recognized lane boundaries. It determines the steering angle for the 
vehicle by taking into consideration the difference between the vehicle's current and ideal locations, 
ensuring that the car stays centred in its lane as demonstrated in Figure 10. This mechanism delivers 
smooth and rapid steering changes, which improves the vehicle’s lane-keeping performance. 
 
6.4. Lane Detection  

The MATLAB code we used is intended to train CNN which requires lane recognition for AV 
systems. This method begins by defining the access methods to the dataset and model. Then, the code 
loads and pre-processes the dataset, splitting it into training and validation sets. The CNN is trained on 
a dataset of lane images, and its validation accuracy demonstrates the model's ability to accurately 
identify lane boundaries. Our results, given in Figure 11, show that the trained network can effectively 
detect lanes in a variety of driving scenarios, yielding an improved lane-keeping performance in AVs. 
Accuracy and processing time are the performance parameters we used to evaluate our CNN model 
[38].  The model’s accuracy on the validation set shows its high accuracy of 100% as given in Figure 
11. Finally, the trained model is successfully stored and prepared for deployment in lane detection 
applications. 

 

 



1323 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 4: 1300-1331, 2025 
DOI: 10.55214/25768484.v9i4.6259 
© 2025 by the authors; licensee Learning Gate 

 

 
Figure 10 a, b.   
LKA simulation with control. 
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Figure 11.  
CNN train model results. 

 
6.5. Insights for Achieved Results 

Autonomous car accidents have occurred, garnering a lot of attention from the media. Famous 
events include an Uber crash in Arizona in 2018 that claimed the life of a pedestrian, and a Tesla 
accident back in 2016 that killed the driver because the car failed to detect a truck. These incidents 
highlight the necessity of explicit guidelines for users of AVs as well as the enhancement of emergency 
protocols and sensory apparatus. Thus, the need for 100% accuracy is vital to avoid such accidents. 
Since our proposed system yields an accuracy of 100%, so it promotes the wide adoption of safe AVs in 
real-life environments.     
       

7. Comparison with State-of-the-art Approaches  

7.1. Comparison of CNN with PID Controller versus RNN with LSTM Cells for LKA 

• CNN with PID Controller – Proposed Approach: CNNs are used to process and analyse visual 
features from cameras and sensors. They can recognize patterns and attributes, including lane 
markings, road signs, and obstacles. CNN analyses visual data to identify lane borders and other 
pertinent elements. Also, they can learn from big data and handle driving situations. While, PID 
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controllers exhibit low voltage, respond to immediate errors, and can struggle with dynamic and 
unpredictable systems. 

 

 
Figure 12.  
LSTM-Based RNN for LKA. 

 

 
Figure 13.   
MPC controller. 

 
Also, they adjust the steering angle based on the CNN output, attempting to minimize the error 

between the current and intended positions to make vehicle in the centre between lanes. They adjust the 
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steering wheel based on the difference between the current position of the vehicle and the centre of the 
desired path. PIDs use matching, coupling, and derivatives to make correct actions. 

• RNN with LSTM Cells – Alternative Approach: RNN use LSTM cells to compute road markings 
and interactions with other vehicles. This method uses a sequence of inputs and previous states to 
accurately determine the inputs to the steering wheel as given in Figure 12 [39]. It uses memory 
capacity to account for past states and sequences of inputs, resulting in highly contextual 
predictions of steering object inputs. Also, it is highly adaptive since it takes into consideration 
temporal dependencies and input sequences, making it more capable of handling dynamic and 
unpredictable situations. 

 
7.1.1. Implementation Complexity 

• CNN with PID Controller: This offers moderate complexity. The CNN needs training, but the 
PID controller is simple to build and tune. Also, the CNN processes the images, and the PID 
controller instantly adjusts the steering wheel angle according to the results. Overall, good real-
time performance.                

• RNN using LSTM Cells: This offers high complexity. To address temporal dependence, 
significant training on data sequences is required, as well as more complex architecture. Real-time 
performance can be difficult to achieve due to the computational requirements of processing input 
sequences and predicting future states. 

 
7.2. Comparison of Model Predictive Control versus PID Control for LKA 

• Model Predictive Control (MPC): The adaptive MPC predicts future vehicle states and optimizes 
steering angle accordingly as illustrated in Figure 13 [40]. The MPC model can modify the 
steering depending on the road curvature prediction and present vehicle dynamics.  

• PID Controllers: They cause changes in the steering angle according to the amount of deviation 
of the vehicle's position from the target position using the three main terms: proportional, 
integral, and derivative that are discussed earlier.  

Comparison between MPC and PID Controllers is given in Table 1.                                   
 

Table 1. 
Comparison between MPC and PID Control for LKA. 

 
 

8. Conclusion and Future Directions  

Our paper showed the importance of combining the PID controllers with CNNs to improve LKA 
system in autonomous cars. It is clear that controlling the lane and reducing the chances of accidents 
due to wrong lane changes depends highly on accurate lane detection. CNNs are very good at 
processing visual input from cameras mounted on vehicles, so we can extract complex hierarchical 
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features to recognize lane markers. This ensures LKA can detect lanes in all kind of driving scenarios, 
including low light and bad weather. This makes ADSs more reliable and safe, so our work helps to 
advance ADSs through the usage of most advanced technologies, leading to a better future 
transportation. 

PID controllers are the control part of LKA systems, they enhance CNNs perceptual ability by 
providing strong steering correction based on real-time feedback from the detected lane boundaries. 
The vehicle position in the lane is maintained by this control system to provide responsive and smooth 
steering correction so the car can be centred. PID controllers are good for LKA systems because they 
are simple and efficient. They can adjust the steering angle to correct any error from the original 
direction, so that driving can be safe and beneficial. 

The combination of CNN with PID controller provides a robust LKA system with full potential. On 
one side, CNNs supply the perceptual competencies for line detection; on the other side, PID controllers 
ensure precision and responsiveness in steering adjustment. In this manner, LKA systems are able to 
maintain rigorous discipline within lanes against the unpredictable dynamic conditions of driving. 
Besides improving LKA systems’ performance, CNN-based perception and PID-based control improve 
the overall safety and reliability of ADS technologies. Our simulation and results obtained point out that 
our CNN-based approach yields high accuracy and low processing time that are needed for real-time 
situations. 

Several critical paths will dominate future research in this area, all of which can improve the 
potential of LKA systems for real-world deployment. Future work could go in the following directions 
that span around improving performance and security of model: 

• More Complex CNN Architectures: This is needed to examine advanced CNN architectures and 
methods to improve the robustness of lane detection and other perceptual tasks.  

• Hybrid Models: CNNs could be combined with other ML models, such as LSTM networks or 
RNNs, to capture temporal relationships in driving data. This would visibly improve the system 
adaptability. 

• Additional Sensors: Multi-modal sensor fusion could be used to utilize information from other 
sensors, such LiDAR, radar, and ultrasonic sensors, in order to improve dependability of the 
perception system, especially in difficult situations like dimly lit areas or unfavourable weather. 

• Sensor Calibration and Synchronization: In order to ensure accurate data fusion and enhance 
overall system performance, techniques for the exact calibration and synchronization of many 
sensors could be developed.  

• Optimized Algorithms: This is required to ensure that the system can run effectively on embedded 
hardware with limited resources, so focusing on optimizing the models and algorithms would 
lower computational complexity and increase real-time performance. 

• Hardware Acceleration: Examining how processing activities, involving perception and control, 
can be accelerated by using hardware accelerators. 

• Robustness in Response to Environmental Changes: Studying domain adaptation strategies that 
improve the system’s resistance to changes in the weather, lighting, and road conditions is crucial 
to develop a more effective model that generalizes to a variety of situations. 

• Driver Monitoring Systems for Human-machine Interaction: These could be integrated to enable 
a safe transition between autonomous and manual driving modes, especially when the autonomous 
system is having problems. 

• User Interface Design: To ensure a smooth connection between the driver and the autonomous 
system, the user interface design needs to be robust to give the driver clear and intuitive feedback. 

• Adversary Training: Use these techniques to strengthen the system’s defences against possible 
adversarial attacks and guarantee dependable performance in real-life situations. 
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• Regulatory Aspects: In order to facilitate the deployment of the created ADS in real-world 
scenarios, work with regulatory bodies to ensure that it satisfies with current laws and 
regulations. 

• Ethical Frameworks: Creating and putting into effect strong ethical frameworks and rules to 
address ethical issues related to ADS is vital, including areas as data privacy and decision-making 
in dangerous situations. 
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Appendices  
 
Appendix A 

 
Figure A1.  
Bird’s eye view code. 
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Figure A2.  
Code for filters using in ADS. 

 
 


