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Abstract: The Advanced Encryption Standard (AES) remains a foundational component of modern 
cryptography, securing vast volumes of digital communication and data storage. Despite its robust 
design and widespread adoption, AES continues to be the subject of intensive cryptanalytic research. 
This paper presents a review of recent advances in attacks against AES, categorizing them into four 
domains: side-channel attacks, fault injection attacks, machine learning and AI-based attacks, and 
quantum computing threats. For each category, representative studies published between 2021 and 
2025 are analyzed with respect to methodology, data requirements, attack complexity, and practical 
applicability. The review highlights both vulnerabilities exposed in specific AES implementations and 
the evolution of attack methodologies, thereby providing a comprehensive perspective on the 
contemporary threat landscape. The findings underscore the need for continuous evaluation and 
adaptation of AES-based systems to ensure cryptographic resilience in the face of advancing adversarial 
capabilities. 

Keywords: Advanced encryption standard (AES), AES security, Side-channel attacks, Fault injection, Machine learning in 
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1. Introduction  

The Advanced Encryption Standard (AES), establish by the National Institute of Standards and 
Technology (NIST) in 2001 [1, 2] has become the standard for symmetric-key encryption across a 
broad spectrum of applications, from secure internet transactions to classified government 
communications. Its architecture, based on a substitution-permutation network and a fixed number of 
rounds dependent on key length [3, 4] was designed to balance security with performance efficiency. 
While AES has withstood extensive cryptanalytic scrutiny over the past two decades, the rapid 
advancement of computational capabilities and the emergence of new cryptographic attack surfaces 
necessitate continuous revaluation of its security assurances [5]. 

Recent technological developments particularly in artificial intelligence, quantum computing, and 
the proliferation of embedded and Internet of Things (IoT) devices have significantly altered the threat 
landscape [6]. These advances have expanded the avenues available to adversaries, enabling novel 
classes of attacks that can exploit subtle implementation flaws, statistical leakages, or theoretical 
weaknesses. Between 2021 and 2025, an increasing number of studies have demonstrated the feasibility 
of attacks on AES implementations using deep learning, fault injection, and quantum algorithms, often 
targeting specific use cases in embedded systems or constrained hardware environments [7, 8]. 
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Given the growing complexity and scope of cryptanalytic research, there is a clear need for a 
comprehensive review that synthesizes recent findings and organizes them by methodological category. 
While individual papers have provided detailed insights into attack vectors, no unified study to date has 
thoroughly categorized and analyzed the post-2020 body of literature on AES cryptanalysis. This paper 
aims to address that gap by conducting a structured review of contemporary attacks on AES, focusing 
on side-channel attacks, fault injection strategies, machine learning-augmented approaches and deep 
learning attacks. Additionally, we examine the impact of emerging quantum techniques and explore the 
effectiveness of countermeasures currently deployed in practice. 

By organizing recent work into clearly defined categories, this review seeks to provide 
cryptographers, security engineers, and researchers with an accessible reference to current threats and 
defences pertaining to AES. Furthermore, it aims to identify open challenges and research opportunities 
in the ongoing effort to secure symmetric-key cryptography in the post-quantum era. 
 

2. Methodology  
This review adopts a structured methodology consistent with best practices in literature reviews, 

with the aim of synthesizing recent cryptanalytic advances targeting the Advanced Encryption 
Standard (AES). The approach comprises three main stages: literature acquisition, classification of 
attack types, and synthesis of findings. 

The objectives of this review are threefold: 
1. To classify and summarize cryptanalytic techniques employed against AES in recent literature 
(2021–2025). 
2. To analyse emerging patterns, trends, and methodological innovations in the attacks. 
3. To provide insights into gaps in current research and suggest future directions for defence 
mechanisms and secure AES implementations. 
To ensure a comprehensive and representative survey of relevant literature, we considered peer-

reviewed journal articles, conference proceedings, and preprints from leading databases and repositories. 
These include the IACR Cryptology ePrint Archive, IEEE Xplore, SpringerLink, ScienceDirect, and 
Google Scholar. The search was conducted using a combination of keywords and Boolean logic to 
capture a wide range of AES-focused cryptanalysis research. 

The search terms included but were not limited to: 

• AES cryptanalysis 

• Advanced Encryption Standard vulnerabilities 

• side-channel attacks on AES 

• fault injection AES 

• quantum cryptanalysis AES 

• machine learning AES attack 

• deep learning side-channel AES 
Each identified paper was reviewed for relevance, novelty, and technical depth. Eligible papers were 

then categorized based on their primary attack methodology. The four main categories are order to 
reflect both historical development and increasing attack complexity. We begin with Side-Channel 
Attacks bridge theory attacks like mathematical attacks to practice by exploiting physical 
implementations through passive observation. Fault Injection Attacks extend this physical paradigm to 
active manipulation representing a more invasive threat class. Emerging Machine Learning, Deep 
Learning & AI-Based Attacks follow, demonstrating how modern techniques enhance traditional 
methods (e.g., automating side-channel analysis or creating neural distinguishers). Finally, Quantum 
Computing Threats are discussed separately as forward-looking theoretical risks (e.g., Grover’s 
algorithm), concluding with future challenges. This order mirrors the evolution of cryptographic 
attacks from pure mathematics to real-world exploitation, then to AI-augmented and quantum era 
threats while maintaining a pedagogical flow from basic to advanced concepts. 
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Hybrid approaches, such as Deep Learning-based cryptanalysis incorporating side-channel leakage 
or AI-enhanced fault analysis, were cross-referenced in multiple categories when applicable. 

For each selected paper, we extracted relevant details including attack vector, complexity, required 
data (e.g., number of traces, faults, or oracle queries), target environment (software, hardware, or 
embedded), and the effectiveness or success metrics reported. This structured extraction supports the 
comparative analysis presented in the subsequent sections and facilitates an informed discussion of 
cryptanalytic trends and defence strategies. 
 

3. Categories of Recent Attacks on AES 
3.1. Side-Channel Attacks 

Side-channel attacks (SCAs) constitute one of the most potent practical threats against AES 
implementations. Rather than targeting weaknesses in the cipher's mathematical structure, SCAs 
exploit physical leakage from the environment in which AES is executed such as variations in power 
consumption, amplitude-modulated electromagnetic (EM) emissions, execution timing, or cache 
behaviour. These leakages can inadvertently reveal sensitive intermediate values during encryption or 
decryption, ultimately compromising secret key material. 

Recent advances between 2021 and 2025 have focused predominantly on power and EM-based 
SCAs, with a significant shift toward deep learning (DL)-based analysis. Traditional template attacks 
and correlation power analysis (CPA) have proven effective in many settings, but they often require 
extensive profiling and precise alignment of traces. In contrast, deep learning models have 
demonstrated robustness against misalignments and noise, while achieving high key recovery success 
rates even against masked implementations. 

Kuroda, et al. [9] explores a non-profiled deep learning-based side-channel attack (DL-SCA) 
framework targeting masked AES-128 implementations, including Random Switching Masking (RSM). 
Their findings revealed that convolutional neural networks (CNNs) could still exploit subtle statistical 
dependencies in the masked traces to recover keys with high accuracy, especially when trained with 
sufficient data (e.g., 50K+ traces). Similarly, Fukuda, et al. [10] introduced a non-profiled deep learning 
side-channel attack technique multi-bit differential deep learning analysis (DDLA) targeting hardware-
implemented AES with and without side-channel countermeasures that labels multiple intermediate bits 
simultaneously to increase learning efficiency. This multi-bit strategy proved effective against hardware 
implementations, achieving key recovery under realistic noise conditions. 

Ghandali, et al. [11] proposed a profiled power side-channel attack using kernelized twin support 
vector machines (K-TSVM), which offered competitive performance to DL models with reduced 
training overhead. Other studies, such as those by Daehyeon Bae, et al. [12] and Negabi, et al. [13] 
focused on DL-powered power analysis attacks against masked AES on microcontrollers, notably the 
ATmega328P, highlighting the practical feasibility of DL-based SCA even on low-cost hardware 
platforms. 

In parallel, EM-based SCAs have gained renewed interest. Wang [14] demonstrated that 
amplitude-modulated EM emissions from a provably masked AES implementation still exhibited 
exploitable leakage patterns. By using specialized probes and applying signal amplification techniques, 
key bytes were successfully extracted without violating the masking assumptions, illustrating that EM 
leakage can circumvent software-level protections. 

Liu, et al. [15] introduced a novel frequency throttling side-channel attack, which leverages 
frequency scaling behaviour in CPUs to derive timing and power patterns associated with AES key-
dependent execution paths. This attack poses a particular risk to embedded AES implementations on 
mobile or power-aware processors where dynamic frequency scaling is used. 

Overall, side-channel attacks have evolved significantly due to machine learning integration. 
Despite countermeasures such as masking, shuffling, and hiding, modern SCA techniques especially DL-
based approaches can learn complex leakage models that challenge traditional notions of leakage-
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resilience. These findings emphasize the need for stronger side-channel countermeasures, including 
hardware-level isolation, randomized S-box implementations, and higher-order masking schemes. 
 
3.2. Fault Injection Attacks 

Fault injection attacks (FIAs) are a class of physical attacks in which transient or permanent faults 
are deliberately introduced into cryptographic hardware or software implementations to bypass security 
mechanisms or extract sensitive information, such as secret keys. These attacks exploit the discrepancy 
between correct and faulty ciphertexts or internal computation states to infer critical information about 
the encryption process. Fault injection has proven to be a particularly effective attack vector against 
embedded systems and lightweight cryptographic implementations used in resource-constrained 
environments. 

Recent research has proposed various techniques and countermeasures to both exploit and mitigate 
fault injection vulnerabilities in AES. Sheikhpour, et al. [16] designed a low-cost fault-resilient AES 
architecture (LC-FRAES) tailored for IoT environments. Their design shares hardware resources 
between encryption and decryption blocks and integrates strong error detection schemes, including 
precomputation with dynamically permuted operands (RDP) and temporal redundancy. LC-FRAES was 
extensively validated under diverse fault injection scenarios and demonstrated a high level of resilience 
against both transient and permanent faults. Moreover, the architecture achieved notable improvements 
in area efficiency, power consumption, and throughput, rendering it a practical and secure solution for 
real-world IoT deployments. 

Pan, et al. [17] focused on enhancing the security of white-box AES implementations, which are 
particularly vulnerable to side-channel and fault attacks due to their exposure in software form. Their 
work combined a Differential Correlation Analysis (DCA) strategy with an intelligent fault injection 
algorithm, optimized using a genetic algorithm. This intelligent approach automated the parameter 
search for fault injection, improving attack efficiency by 980% compared to random selection. To 
counteract these attacks, the authors proposed a rotating S-box masking scheme, which proved effective 
in mitigating side-channel leakage and fault-induced weaknesses, thereby strengthening the white-box 
AES against combined DCA-FIA strategies. 

Ghosal, et al. [18] proposed an enhancement to the AES MixColumns transformation MixColumn-
Plus as a defence against Differential Fault Analysis (DFA) attacks. The method introduces two 
alternate transformation matrices, Mmix1 and Mmix2, which are incorporated into the MixColumns 
operation to increase the complexity of successful DFA attacks. The improved construction raises the 
attack complexity to approximately 2116, significantly hindering fault-based key recovery. Importantly, 
their FPGA-based hardware implementation showed that the security benefits were achieved with 
negligible impact on execution time, frequency, or hardware resource utilization, making it suitable for 
constrained embedded environments. 

Further insights into DFA were provided by Anand, et al. [19] who demonstrated that fault 
injection into AES-based authenticated encryption schemes such as Rocca, Rocca-S, and AEGIS can 
drastically reduce the key search space. Their work underlines the necessity of robust fault detection 
and mitigation in schemes that rely on AES as a cryptographic core, especially in contexts requiring 
high security assurances. 

Mestiri, et al. [20] introduced a parity-based fault detection scheme designed to enhance AES 
resilience in embedded systems. Their method computes and compares predicted and observed parities 
at each round of AES execution, incorporating hybrid redundancy mechanisms across multiple AES 
subcomponents, including the key scheduler, control logic, and round transformations. The design was 
implemented on a Xilinx Virtex-5 FPGA and demonstrated fault coverage of 99.999%, with moderate 
area overhead (45.59%) and minor performance degradation (3.83%). These results indicate a strong 
trade-off between cost and security, supporting the deployment of parity-based detection for critical 
embedded applications. 
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In summary, fault injection remains a potent threat to AES implementations, particularly in 
environments where physical access is feasible, or software-level protections are insufficient. However, 
recent advances in fault-aware hardware design, intelligent masking, and redundancy-based defenses 
have demonstrated considerable promise in mitigating these attacks. Moving forward, integrating these 
countermeasures into AES implementations especially those in IoT and mobile applications will be 
essential to maintaining robust fault tolerance and long-term cryptographic integrity. 
 
3.3. Machine Learning and Artificial Intelligence based Attacks 

The integration of artificial intelligence (AI) and machine learning (ML) techniques has 
significantly advanced the capabilities of cryptanalytic attacks against AES. These technologies have 
been employed both to automate and optimize traditional attack strategies and to uncover new 
vulnerabilities previously considered resistant to practical exploitation. While AI and ML are also being 
explored to enhance AES security through adaptive defence mechanisms, recent research predominantly 
emphasizes their offensive potential especially in the context of side-channel leakage, key guessing, and 
implementation-specific vulnerabilities. 

In Zhong, et al. [21] introduced a novel key-guessing attack paradigm against logic block 
encryption, leveraging supervised ML techniques. Their methodology involved constructing a three-
layer neural network coupled with a Naive Bayes classifier to approximate the inverse function of the 
encryption logic. The model was trained on data derived from simulations using encrypted netlists and 
activated integrated circuits (ICs), wherein randomized input and key vectors were applied to generate 
output responses. Once trained, the network effectively inferred key candidates, which were 
subsequently refined using the Naive Bayes classifier to improve prediction accuracy. Experimental 
results demonstrated that this approach could significantly accelerate key recovery, exposing practical 
weaknesses in contemporary logic encryption schemes. 

Pasquale Arpaia [22] examined the effectiveness of machine learning-assisted side-channel attacks 
using power analysis. The study employed a multilayer perceptron (MLP) to classify power traces and 
recover the AES-128 secret key. Signal-to-noise ratio (SNR) analysis was used to identify points of 
interest (POIs) in the traces, which were then aligned with intermediate values derived from known 
plaintexts and masked keys. The model's performance was assessed using guessing entropy (GE) and its 
associated uncertainty, estimated via Monte Carlo simulations. Their experimental framework, 
validated on the ASCAD public dataset, revealed that ML can offer reliable key recovery performance 
even in the presence of side-channel countermeasures. 

A different attack vector was demonstrated by Priya and Kapilamithran [23] who explored the 
intersection of generative AI and cryptographic implementation flaws, specifically targeting AES 
padding oracle vulnerabilities in web authentication systems. A custom login interface was developed 
using HTML, CSS, and JavaScript (frontend), with Python and Flask powering the backend. AES 
encryption was applied to user credentials before transmission. The authors exploited padding oracle 
vulnerabilities to infer plaintext lengths from ciphertexts and employed generative AI to predict 
potential password structures based on observed webpage behaviour. This combination of padding 
oracle exploitation and AI-enhanced input prediction illustrates a novel avenue for compromising AES-
protected web applications. 

In a broader context, Ahn, et al. [24] conducted a comprehensive survey examining vulnerabilities 
in widely used cryptographic network protocols such as TLS and SSH. While not limited to AES, the 
study analysed weaknesses across encryption schemes at the transport and application layers of the 
TCP/IP stack. Drawing from CVE reports and major scientific repositories, the survey categorized 
cryptographic vulnerabilities into groups targeting key exchange protocols, block and stream ciphers, 
and session establishment mechanisms. Their findings underscore the increasing complexity of attack 
surfaces in modern networked environments and provide recommendations for future research 
directions to mitigate cryptographic risk. 
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Despite their demonstrated success, AI and ML-based attacks on AES are not without significant 
limitations. First, training deep models such as MLPs and convolutional neural networks (CNNs) 
demands substantial computational resources, making them impractical for resource-constrained 
attackers or real-time applications. The efficacy of these models is highly contingent on the quality and 
volume of training data, with noise, desynchronization, and jitter in power traces reducing model 
accuracy. Identifying relevant POIs and extracting robust features for training often requires expert 
domain knowledge and time-consuming pre-processing. 

Moreover, AES implementations frequently incorporate countermeasures such as masking, hiding, 
and randomization, which obfuscate side-channel leakage and degrade the performance of ML-based 
attacks. While machine learning can estimate the guessing entropy for partial key recovery, combining 
these estimates to recover the full 128-bit AES key remains computationally demanding. Many ML-
based attacks focus on recovering subkeys (e.g., individual bytes), but the combinatorial complexity of 
reconstructing the complete key presents a persistent challenge. 

Finally, the generalization and reproducibility of ML attacks across different devices and datasets 
remain open problems. Models trained on one platform may not transfer well to another due to 
variations in leakage patterns, hardware characteristics, and implementation-specific features. These 
factors highlight the need for ongoing research to improve the robustness, scalability, and 
transferability of ML-based attacks, as well as the development of resilient AES implementations 
capable of withstanding AI-assisted adversaries 
 
3.3.1. Deep Learning Attacks 

Deep learning (DL) has emerged as a transformative tool in the realm of cryptanalysis, offering 
enhanced capabilities for side-channel attacks on symmetric-key algorithms such as the Advanced 
Encryption Standard (AES). Leveraging the pattern recognition strength of neural networks, DL 
models can learn to extract cryptographic secrets from physical leakage data particularly power traces 
and electromagnetic emissions—thereby posing serious threats to the confidentiality of AES-based 
systems. 

Among the most applied architectures are multi-layer perceptron’s (MLPs) and convolutional 
neural networks (CNNs), which have demonstrated strong performance in both profiling and non-
profiling side-channel attack scenarios. Profiling attacks involve training the model on a known device 
under controlled conditions to predict key-dependent leakages in a target system, while non-profiling 
attacks bypass the training phase on a reference device, instead attempting to infer patterns directly 
from the attack target. Numerous studies Daehyeon Bae, et al. [12]; Ghandali, et al. [11] and 
Swaminathan, et al. [25] have confirmed that DL-based approaches can achieve high accuracy in key 
recovery, even in the presence of countermeasures such as first-order masking. 

Kubota, et al. [26] highlighted how CNNs could outperform classical side-channel techniques by 
automatically identifying points of interest (POIs) in traces, enabling the recovery of AES subkeys with 
minimal manual feature engineering. These models are particularly effective at learning complex, non-
linear relationships between side-channel leakage and intermediate values within the AES round 
transformations. 

Negabi, et al. [13] demonstrated a practical deep learning-based power analysis attack (PAA) 
against AES-128 implemented on an ATmega328P microcontroller. Their methodology involved 
training a CNN on captured power consumption traces from the target device, enabling the model to 
extract key-dependent features and ultimately reconstruct the AES-128 secret key. Notably, their 
approach achieved successful key recovery with fewer traces than traditional techniques, underscoring 
the efficiency and scalability of DL-based power analysis. 

In another significant contribution, Tom´aˇs Gerlich [27] introduced DL-SITM a deep learning-
augmented version of the See-in-the-Middle (SITM) attack. The authors generated plaintext pairs with 
controlled Hamming distances and analysed their differential power traces to localize collision points 
within AES's internal state. A CNN classifier trained on these differentials effectively automated what 
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was previously a manual visual inspection step, enabling successful collision detection even under high-
noise and jitter countermeasure conditions. DL-SITM demonstrated high precision and recall across 
multiple datasets, highlighting its robustness under realistic deployment settings. 

Expanding the application scope of deep learning in cryptographic contexts, Dhanalakshmi [28] 
proposed an integrated DL-enhanced classification framework for wireless sensor networks (WSNs). 
The system utilized hybrid encryption combining AES and elliptic curve cryptography (HAE-ECC) to 
secure node communication. A multi-stage optimization and classification pipeline, incorporating Deep 
CNNs, Bi-directional LSTM, and an Attention Mechanism, was employed to identify attack behaviours 
in encrypted traffic. Although this approach focused more on intrusion detection than key recovery, it 
exemplifies how DL can complement cryptographic primitives to enhance overall system security. 

Despite the promise shown by DL in cryptanalysis, several limitations constrain its practical 
applicability in real-world scenarios: 

• Dependence on High-Quality Side-Channel Data: DL models require large, well-labelled datasets 
of power traces or EM emissions. Noise, desynchronization, and environmental variability can 
severely impact model performance. 

• Significant Data and Computational Overhead: Training deep neural networks especially CNNs 
demands extensive computational resources and may not be feasible for real-time or constrained 
environments. 

• Reliance on Known Plaintext or Ciphertext: Many DL-based attacks require access to input-
output pairs, which may not always be available in practice. 

• Reduced Effectiveness Against Countermeasures: Techniques such as masking, hiding, shuffling, 
and jitter injection can degrade the information content of traces, thereby lowering attack 
accuracy. 

• Lack of Real-World Deployment Examples: While laboratory results are promising, few DL-
based attacks have been documented in practical attack scenarios outside controlled experimental 
conditions. 

These challenges highlight the dual necessity of advancing DL-based attack methodologies while 
simultaneously strengthening implementation-level countermeasures. Future work must focus on 
enhancing the generalizability, efficiency, and stealth of DL attacks, as well as building more resilient 
AES implementations across software and hardware platforms. 
 
3.4. Quantum Computing Threats 

The advent of quantum computing presents a significant paradigm shift in the field of cryptanalysis, 
with profound implications for both symmetric and asymmetric cryptographic systems. Although 
symmetric algorithms like AES are considered more resistant to quantum attacks than public-key 
schemes, they are by no means immune. Grover’s algorithm enables a quadratic speedup in brute-force 
key search, effectively reducing the security level of AES-128 from 128 to 64 bits in a quantum context. 
This section surveys recent advances in quantum-assisted cryptanalysis techniques that target AES or 
AES-like primitives, focusing on structural, algebraic, and amplitude amplification-based methods. 

Xiaoyang Dong [29] introduced an automated tool designed to optimize rebound attacks by 
identifying high-probability related-key differentials in AES-like constructions. The tool streamlines the 
process of modelling key differences and managing linear incompatibilities, which are prevalent in 
modern lightweight block ciphers. Applied to Saturnin (a NIST LWC Round 2 candidate), SKINNY-
128-384, and Whirlpool, the framework yields 7- to 9-round collision attacks that exploit quantum 
collision finding principles without requiring qRAM or large memory. While not always faster than 
classical memory-intensive attacks, these techniques demonstrate practical relevance in quantum-ready 
cryptanalytic frameworks. 

Chang, et al. [30] explored the vulnerability of AES-OTR (Offset Two-Round), an authenticated 
encryption algorithm, in the presence of quantum adversaries. By leveraging the Simon algorithm, a 
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quantum algorithm suitable for finding hidden periodicities, the authors constructed a collision forgery 
attack capable of identifying non-trivial periods in associated data. The attack operates with near-certain 
success probability, underscoring the fragility of mode-specific AES constructions when evaluated under 
quantum assumptions. These findings suggest that even secure AES instantiations may require redesign 
in the post-quantum landscape. 

Jang, et al. [31] reviewed the application of quantum meet-in-the-middle attacks, particularly 
quantum-enhanced adaptations of the classical Demirci–Selçuk framework. Although these attacks do 
not currently outperform Grover-based brute-force search in the case of full-round AES, they highlight 
structural vulnerabilities that could become exploitable in reduced-round or misconfigured 
implementations. Importantly, these techniques provide insight into how classical cryptanalytic 
frameworks may be augmented with quantum speedups to target specific components of AES. 

Cai, et al. [32] proposed a quantum slide attack on 1K-AES using Quantum Amplitude 
Amplification (QAA). The method begins by generating a set of random plaintext-ciphertext pairs and 
partially decrypting them to derive XOR differentials. A QAA-based search is then employed to identify 
matching entries from a precomputed transformation table. Unlike Grover's algorithm, QAA is 
optimized for non-uniform superpositions and can efficiently handle scenarios with an unknown number 
of valid states. This makes it particularly effective in scenarios where the probability distribution of 
successful matches is sparse or non-deterministic. 

Mandal, et al. [33] presented an implementation of Grover’s algorithm using an enhanced 
Variational Quantum Amplitude Amplification (VQAA) technique, applied to symmetric key 
cryptanalysis. Their hybrid quantum-classical architecture utilizes a variational quantum circuit (VQC) 
to generate candidate key superpositions, with a cost function comparing trial encryptions to known 
ciphertexts. The optimization is guided by classical methods such as conjugate gradient descent. Their 
experiments, conducted in a simulated noise-free environment using Qiskit on a MacBook Pro (Apple 
M1 Pro), demonstrated significant qubit and depth reductions compared to standard Grover circuits. 
While the study focused on simplified ciphers like S-AES and Blowfish, the techniques are generalizable 
to larger-key AES variants. 

The cumulative implications of Grover's algorithm for symmetric encryption are well-documented 
[33-35]. Specifically, Grover reduces the complexity of exhaustive key search from O(2n) to O(2n/2) 
where n is the key length. For AES-128, this implies an effective security strength of only 64 bits 
against a quantum-capable adversary. Consequently, NIST and other standards bodies now recommend 
the use of AES-256 for long-term post-quantum applications. While no quantum algorithm is currently 
known to break AES completely in polynomial time, the reduction in brute-force resistance necessitates 
a revaluation of key sizes and reinforces the need for quantum-resilient implementations. 

In conclusion, while AES remains secure under current quantum threat models, emerging research 
illustrates how quantum techniques can systematically undermine various structural and operational 
aspects of AES and its variants. Continued development of quantum-resistant symmetric algorithms, 
along with hybrid defence strategies, will be essential to ensuring cryptographic robustness in the 
forthcoming post-quantum era. 
 

4. Discussion and Limitations 
The analysis of 25 recent studies on AES cryptanalysis reveals a clear evolution in attack strategies, 

reflecting both advances in attacker capabilities and the growing complexity of AES implementations 
across different platforms. These attacks span a wide spectrum from side-channel and fault injection to 
machine learning and quantum cryptanalysis each exhibiting distinct requirements, assumptions, and 
levels of practicality. 

Side-channel attacks remain among the most prevalent and practically demonstrable threats. The 
review shows that modern DL-based side-channel attacks (e.g., CNNs, K-TSVMs) require tens of 
thousands of traces and are often effective against both masked and unmasked AES implementations. 
However, their success depends heavily on data quality, proper alignment, and model tuning. EM-based 
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side-channel attacks similarly expose vulnerabilities in hardware-level AES even under masking, though 
they require careful probe placement and noise handling. 

Fault injection attacks have matured considerably, as evidenced by their ability to bypass or degrade 
the security of embedded AES through glitching, electromagnetic interference, or induced hardware 
faults. The reviewed works demonstrate the effectiveness of intelligent fault injection algorithms using 
evolutionary techniques (e.g., genetic algorithms) and highlight countermeasures like MixColumn-Plus 
and parity-based detection as viable hardware-level defence. Despite their potency, FIAs typically 
require physical access and tailored fault models. 

AI and ML-assisted attacks increasingly blur the line between classical and side-channel techniques. 
Attacks that combine logic block encryption analysis with neural networks, or that employ padding 
oracle exploitation enhanced by generative AI, illustrate the growing role of automation in key 
extraction. However, these approaches remain largely dependent on data labelling, training overhead, 
and generalization performance factors that currently limit their scalability across different hardware 
environments. 

Quantum computing threats, while still largely theoretical, have begun to transition into concrete 
frameworks using simulation environments and hybrid quantum-classical models. Attacks based on 
Grover’s algorithm, quantum amplitude amplification, and Simon’s algorithm collectively demonstrate a 
consistent reduction in brute-force complexity and highlight specific vulnerabilities in mode-based AES 
instantiations such as AES-OTR. Nevertheless, these methods are contingent on the future availability 
of large-scale quantum hardware and remain infeasible in practice at present. 

To systematically analyze recent advancements in AES attacks, we present two structured 
summaries. Table 1 categorizes key studies by attack type (side-channel, machine learning, or fault 
injection), their target (e.g., hardware/software implementation), and complexity—classified as low 
(O(n), O(n²)), medium (O(2^(n/2))), or high (O(2^n))—along with their practical feasibility. This scaling 
highlights the computational tractability of attacks, aiding in risk assessment. Table 2 complements this 
by detailing data requirements, proposed countermeasures, key conclusions, and limitations of each 
study, emphasizing gaps in mitigation strategies. Together, these tables provide a consolidated 
framework for evaluating attack trends, computational trade-offs, and defensive priorities in AES 
security research. 
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Table 1. 
Attacks Characteries 

Paper (Year) Attack Type Target Complexity Practical or 
Theoretical? 

Kuroda, et al. 
[9] Side-channel (DL) 

AES software with 
masking Medium Practical 

Liu, et al. [15] Side-channel (Frequency Throttling) 
General AES 
implementations High Practical 

Wang [14] Side-channel (EM) Masked AES Medium Practical 

Fukuda, et al. [10] Side-channel (DL, Multi-bit) AES hardware High Practical 

Zhong, et al. [21] Machine learning aided key guessing Logic block encryption Medium Practical 

Pasquale Arpaia 
[22] Side-channel (ML-based power) AES hardware Medium Practical 
Priya and 
Kapilamithran [23] Padding Oracle / AI-based AES CBC Medium Practical 

Negabi, et al. [13] Side-channel (Power Analysis + DL) AES on ATmega328P Medium Practical 

Daehyeon Bae, 
et al. [12] Side-channel (DL) Masked AES Medium Practical 

Ghandali, et al. 
[11] Side-channel (Power, DL) AES-128 High Practical 

Swaminathan, et 
al. [25] Side-channel (DL) AES inner rounds High Practical 

Kubota, et al. [26] Side-channel (DL) AES hardware Medium Practical 

Tom´aˇs 
Gerlich [27] See-in-the-middle (DL) AES High Theoretical 

Dhanalakshmi [28] DL Classification Attack WSN Encryption Medium Practical 

Xiaoyang Dong 
[29] Classical + Quantum Rebound AES-like Hashing High Theoretical 

Chang, et al. [30] Quantum Collision Forgery AES-OTR High Theoretical 

Jang, et al. [31] Quantum Analysis AES Low Theoretical 
Cai, et al. [32] Quantum Attack 1K-AES, PRINCE Low Theoretical 

Mandal, et al. 
[33] Quantum (Grover) AES-based AEAD Medium Theoretical 

Moiseevskiy [35] Quantum-enhanced Classical S-AES Low Theoretical 
Sheikhpour, et al. 
[16] Fault Injection AES in IoT Low Practical 

Pan, et al. [17] DCA + Fault Injection White-box AES High Practical 
Ghosal, et al. [18] Differential Fault Analysis AES Hardware Medium Practical 

Mestiri, et al. [20] Fault Detection AES Embedded Systems Low Practical 
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Table 2. 
Attacks Implication 

Paper (Year) Data Requirements Countermeasures Key Conclusion Limitation 

Kuroda, et al. [9] Side-channel traces Masking (RSM) 

DL attacks can break 
masked AES under 
certain settings 

Depends on training 
data and leakage 
model 

Liu, et al. [15] Power profile timing 
Constant frequency, 
detection systems 

Frequency-based 
leakage is exploitable 

Requires system-level 
access 

Wang [14] EM traces 
EM shielding, 
masking 

Even masked AES 
leaks through EM Setup-dependent 

Fukuda, et al. [10] Power traces Multi-bit masking 

DL attacks can use 
multiple-bit labels 
effectively 

Data-hungry and 
model sensitive 

Zhong, et al. [21] 
Plaintext-ciphertext 
pairs 

Obfuscation, 
randomization 

ML can speed up 
guessing attacks Assumes labeled data 

Pasquale Arpaia 
[22] Power measurements Noise injection 

Uncertainty must be 
managed in ML 
attacks Accuracy tradeoffs 

Priya and 
Kapilamithran [23] 

Access to padding 
oracle Proper error handling 

AI can exploit padding 
oracles Requires oracle access 

Negabi, et al. [13] Power traces Hiding, masking 
DL aids in power 
analysis key extraction Needs device access 

Daehyeon Bae, et 
al. [12] Power traces Masking 

DL models can 
recover keys from 
masked AES 

Relies on training 
quality 

Ghandali, et al. [11] Power traces Power equalization 

K-TSVM improves 
side-channel key 
recovery 

Computationally 
intensive 

Swaminathan, et 
al. [25] Power traces Round randomization 

DL can target AES 
rounds independently 

Requires accurate 
labeling 

Kubota, et al. [26] Power traces Hardware masking 
DL models can exploit 
hardware leakages 

Needs device-specific 
tuning 

Tom´aˇs Gerlich 
[27] Intermediate values Layer separation 

DL-SITM reveals 
internal AES state Hard to generalize 

Dhanalakshmi [28] Encrypted traffic Encryption variation 
DL enhances traffic 
classification Specific to WSN 

Xiaoyang Dong 
[29] 

Related-key 
differentials Avoid related keys 

Rebound attack still 
viable in hybrid 
settings Not full AES 

Chang, et al. [30] Ciphertext pairs Larger tag sizes 

Quantum threats exist 
for authenticated 
encryption Model-dependent 

Jang, et al. [31] Key space model AES-256 
AES security halves 
under Grover 

Quantum model 
assumption 

Cai, et al. [32] Ciphertexts High key length 
Short key AES 
variants vulnerable Quantum feasibility 

Mandal, et al. 
[33] Ciphertext queries AES-256 

Grover reduces AEAD 
scheme strength 

Assumes large-scale 
quantum 

Moiseevskiy [35] Known plaintext 
Quantum-resistant 
ciphers 

Quantum models 
accelerate classical 
attacks Toy cipher (S-AES) 

Sheikhpour, et al. [16] Faulty ciphertexts Redundancy 
Low-cost hardware 
can resist fault attacks Limited scalability 

Pan, et al. [17] Traces + faults Obfuscation 

Fault + DCA effective 
against white-box 
AES Resource-intensive 

Ghosal, et al. [18] Faulty ciphertext Fault-tolerant design 
Secure hardware can 
tolerate faults Extra resource cost 
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Mestiri, et al. [20] System logs 
Real-time error 
monitoring 

Detects anomalies in 
AES execution May not block attacks 

 
The analysis reveals that most of recent AES attacks are practical in nature, with 17 categorized as 

practical and only 7 as theoretical as shown in figure 1. This indicates a strong trend in the 
cryptanalysis community toward implementing and validating attack methods in real-world or 
simulated environments. The prevalence of practical attacks highlights the importance of considering 
applied vulnerabilities in AES, especially in constrained or specific use-case scenarios like IoT and 
embedded systems. 
 

 
Figure 1. 
Practical Attacks vs Theoretical Attacks. 

 
Figure 2 analyzed attacks, 5 were classified as low complexity, 11 as medium complexity, and 8 as 

high complexity. The predominance of medium complexity attacks suggests that most breakthroughs 
strike a balance between feasibility and sophistication, making them significant enough to warrant 
attention yet accessible enough to be reproduced or extended. The relatively high number of high-
complexity attacks also reflects ongoing efforts to push the boundaries of AES security through 
advanced techniques such as quantum cryptanalysis and fault injections. 
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Figure 2. 
Number of articles for each complexity class 

 
When examining attack complexity over the years in figure 3, a diverse distribution is observed 

across low, medium, and high complexity categories each year. This suggests that no single trend 
dominates the field annually; instead, researchers explore vulnerabilities across all complexity levels. 
However, a gradual increase in medium and high complexity attacks in recent years may reflect the 
maturing of cryptanalytic methods and the growing use of advanced computing resources, including AI 
and quantum models, to challenge AES resilience. 
 

 
Figure 3.  
Number of articles for each year classify by their complexity 

 
Based on the Table 2, the following limitations are observed across attack categories: 

• Many practical attacks require extensive side-channel traces (≥50K) or faults (≥100), which are 
not trivial to obtain in field conditions. 
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• Attack complexity, especially for deep learning and quantum variants, is non-trivial—training 
models or simulating quantum algorithms incurs substantial computational cost. 

• Countermeasures like masking, redundancy, and noise injection continue to challenge the 
reproducibility and robustness of many attacks. 

• Theoretical attacks often make idealized assumptions about attacker capabilities or fault models 
that do not hold in constrained, real-world deployments. 

• Few attacks are demonstrated across diverse platforms (e.g., FPGA, ASIC, microcontrollers), 
limiting generalization across architectures. 

• While attacks continue to evolve, they simultaneously illuminate vulnerabilities and catalyse the 
development of more robust AES implementations. This dynamic arms race is critical to 
sustaining the long-term viability of AES in both legacy and forward-looking systems. 

 

5. Conclusion and Future Work 
AES has remained a cornerstone of modern cryptography for over two decades, trusted for its 

simplicity, speed, and resistance to classical cryptanalysis. However, the continued advancement of 
attack methodologies especially those employing side-channel leakage, machine learning, and quantum 
computing demands ongoing scrutiny and innovation in its implementation. 

This review synthesized recent advances in AES cryptanalysis from 2021 to 2025, categorizing 
them across four major domains: side-channel attacks, fault injection technique, machine learning-
assisted techniques and quantum computing threats. Each attack type was evaluated based on its 
complexity, data requirements, countermeasures, and practical feasibility. The comparative analysis 
reveals that many attacks are now capable of targeting full-round AES-128 implementations under 
realistic settings, particularly in embedded and IoT contexts. 
 
Looking forward, several avenues for future research are evident: 

• Scalable and transferable machine learning models that generalize across devices and 
implementations. 

• Lightweight but effective countermeasures for AES in resource-constrained environments, 
especially for wearable and mobile technologies. 

• Robust benchmarking frameworks and datasets to enable reproducible evaluation of side-channel 
and fault attacks. 

• Post-quantum symmetric design adaptations, such as increased key lengths or hybrid modes, to 
resist quadratic quantum speedups. 

• Integrated co-design approaches, where hardware, firmware, and cryptographic logic are 
developed jointly with fault and leakage resilience in mind. 

Ultimately, while AES remains secure under its original design assumptions, its real-world security 
is increasingly dependent on implementation details. This review underscores the necessity of 
continuously evolving both offensive and defensive strategies to preserve the integrity of AES-based 
systems in a rapidly changing technological landscape. 
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