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Abstract: As distance education in Argentine higher education expands rapidly, decision-making 
systems must evolve to support personalized, fair, and scalable learning pathways. Existing 
recommendation tools often ignore curriculum dependencies, student goals, and the pedagogical value 
of recommendations. This paper proposes a generative LLM-based decision design that integrates 
course knowledge graphs and student profiles into a retrieval-augmented prompting framework. The 
system leverages large language models (LLMs), particularly GPT-4, to generate curriculum-aligned 
recommendations that support human-in-the-loop educational decisions. A scoring mechanism ensures 
graph consistency and prerequisite compliance, while experimental evaluations demonstrate 
improvements in recommendation accuracy, personalization, and fairness. The proposed approach offers 
a flexible and context-aware decision support model suitable for Latin American distance education 
institutions. 

Keywords: Argentina, Distance learning, Educational recommender systems, Generative AI, Knowledge graphs, Large 
language models, Smart education. 

 
1. Introduction  

The rapid transformation of higher education, especially in remote learning environments, has 
generated a pressing need for efficient, personalized, and adaptive decision-making systems. In 
Argentine universities, the increasing scale of online course provision and the diversity of student 
profiles have exposed the limitations of traditional, centralized scheduling or advisory approaches. 
Conventional methods generally rely on deterministic algorithms or heuristic rule-based systems, which 
often fail to capture the nuanced needs of each learner and the dynamic nature of course offerings [1]. 

Recent advancements in large language models (LLMs) offer an unprecedented opportunity to 
generate natural language decisions that are both context-aware and pedagogically informed [2]. By 
integrating domain-specific knowledge extracted from course materials and student data, generative 
models such as GPT-4 can assist educators in formulating recommendations that not only reflect 
curriculum structure but also adapt dynamically to student progress [3]. However, challenges remain 
in ensuring the factual accuracy and domain alignment of LLM outputs, as such models are inherently 
trained on large-scale, general-purpose text corpora [4]. To overcome these drawbacks, recent studies 
have investigated techniques like prompt engineering, retrieval augmentation, and fine-tuning on 
educational datasets, thereby harnessing the potential of LLMs while mitigating issues such as 
hallucinations and domain misalignment [5]. 

In parallel, knowledge graphs have been successfully used to represent course structures and 
learning content, providing a structured basis for personalized recommendations [6]. Existing graph-
based recommender systems in distance education have shown that incorporating explicit prerequisite 
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and dependency relations significantly enhances both the quality and explainability of course 
recommendations [7]. When combined with the generative capabilities of LLMs, these approaches 
enable a hybrid framework that supports human-in-the-loop decision-making. This integration allows 
for the generation of recommendations that not only satisfy students’ immediate learning needs but also 
align with long-term academic pathways [7]. 

Moreover, preliminary evaluations in similar application domains have demonstrated that LLM-
based decision support systems achieve high levels of agreement with human experts, indicating their 
potential to assist educators in managing diverse learner populations [8]. In contrast with prior 
methods that treated stakeholders as passive recipients, our approach explicitly models the interactive 
decision process, allowing a dynamic feedback loop between the system outputs and teacher 
interventions [9]. In summary, the emergence of generative LLM-based approaches provides a 
promising avenue for developing intelligent decision support systems that cater to the complex 
demands of remote education in Argentine universities. 

 
2. Related Work  
2.1. LLMs in Educational Decision-Making 

Large language models (LLMs) such as GPT-3/4, PaLM, and LLaMA are increasingly used to 
support educational decision-making. Applications include feedback generation, curriculum planning, 
and adaptive tutoring MacNeil, et al. [1] and Nguyen and Allan [2]. MacNeil, et al. [1] found GPT-
based explanations improved learner experience in web development e-books. Nguyen and Allan [2] 
demonstrated that GPT-4 can provide formative feedback with high rubric alignment when prompt-
engineered. Hu, et al. [3] showed that LLMs could simulate lesson planning and generate effective 
classroom content comparable to human teachers. In medical training contexts, Suresh and Misra [4] 
warned of factual inaccuracies, emphasizing the importance of human oversight. 

Jeon and Lee [5] highlight that LLMs are best used as assistants rather than replacements for 
teachers, supporting planning and content creation. Zhang, et al. [6] evaluated LLM grading reliability, 
showing high agreement with human evaluators when given explicit rubrics. However, LLMs face 
challenges such as hallucinations, lack of domain alignment, and inconsistent reasoning [4, 10]. To 
address these, researchers propose strategies including fine-tuning on educational corpora, retrieval-
augmented generation, and structured prompt templates [11]. 

These methods ground LLM outputs in trustworthy content and enable context-sensitive decision-
making. Guizani, et al. [10] emphasized integrating educational theory into LLM deployment. 
Together, these approaches lay the foundation for using LLMs as part of a hybrid human-AI teaching 
workflow, enabling both automation and pedagogical oversight [3, 5]. While most LLM applications 
are studied in English-speaking contexts, there is limited work examining their use in Latin American 
universities, particularly those operating in Spanish-speaking environments like Argentina [12]. 

 
2.2. Knowledge Graphs and Recommender Systems in Distance Education 

Knowledge graphs (KGs) have been applied to course modeling and recommendation systems to 
support personalized learning pathways in online education Yang, et al. [7] and Li, et al. [13]. Li, et al. 
[13] developed CourseKG to represent prerequisite structures, learning objectives, and topics for 
intelligent path planning. Yang and Cai [11] extended this with a bilateral knowledge graph that 
models both course-side and learner-side relations to optimize alignment. 

Explainable recommenders have become essential in education. Yang, et al. [7] and Pardos, et al. 
[9] introduced a graph-based model using multiple interest factors and graph embeddings, generating 
human-understandable rationales for each recommendation. Pardos, et al. [9] and Deldjoo, et al. [14] 
showed that transparency improves user trust and outcomes, as does incorporating semantic reasoning 
from the course graph. 
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A persistent issue in course recommendation is balancing accuracy with fairness and growth [15]. 
Deldjoo, et al. [14] and Da Silva, et al. [15] noted that many systems optimize prediction accuracy 
without ensuring equitable outcomes, which may unintentionally disadvantage certain learners. Da 
Silva, et al. [15] and Salas-Pilco and Yang [12] advocate for multi-dimensional evaluation frameworks 
that assess pedagogical effectiveness, equity, and student motivation—not just clicks or satisfaction. 

Salas-Pilco and Yang [12] and Frej, et al. [16] examined Latin American universities and 
highlighted the lack of localized recommender models. Many global MOOC systems are not aligned 
with regional curricula, are monolingual (English), and ignore socioeconomic factors like part-time 
learning or course access constraints. Recent work by Frej, et al. [16] proposes aligning course 
recommendations with job market demand using skill extraction and LLM-guided matching. 

Despite these advancements, more research is needed in real-world deployment of context-aware, 
explainable, and fair educational recommender systems in Latin American environments. 

 
3. Generative LLM-Based Model for Distance Education Decision Design  

This section introduces the architecture and algorithms used to design a large language model 
(LLM)-assisted decision-making system tailored for distance education in Argentine higher education. 
The model is designed to support personalized course and intervention recommendations by integrating 
structured curriculum knowledge and individual learner profiles, and generating decisions via 
generative natural language inference. It follows a retrieval-augmented generation (RAG) paradigm 
enhanced with graph-based context modeling. 
 
3.1. System Overview and Architecture 

In response to the growing demand for data-informed, student-centered decision-making in remote 
learning environments, we propose a modular system combining knowledge graph reasoning, prompt 
generation, and LLM inference. 

 

 
Figure 1.  
Overall architecture. 

 
The overall architecture is illustrated in Figure 2, which consists of the following components. The 

model pipeline comprises the following stages: 

Student Profile Encoding (𝑠): Learner metadata (prior courses, goals, performance). 
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Course Knowledge Graph (𝒢): Curriculum graph with topics and dependencies. 

Prompt Generator(𝑃): Combines 𝑠 and relevant subgraph to generate prompt 𝑥𝑝. 

LLM Core (ℳ𝜃): Generates decision output𝑦∗. 
Decision Logic Module (𝐷): Interprets, filters, and scores𝑦∗. 

 
3.2. Prompt Generation and Context Injection 

Let 𝒔 = {𝑐1, … , 𝑐𝑛}. denote the student’s completed courses, and 𝒢𝑟 the subgraph retrieved: 

𝒢𝑟 = {𝑣 ∈ 𝒢 ∣ ∃𝑢 ∈ 𝒔, (𝑢 → 𝑣) ∈ ℰ) 
Prompt template $T$ yields:  

𝑥𝑝 = 𝑇(𝒔, 𝒢𝑟) 

 
3.3. Generative Decision Function 

The model ℳ𝜃 generates 𝑦 given 𝑥𝑝: 

ℳ𝜃(𝑦 ∣ 𝑥𝑝) =∏𝑃𝜃

𝑇

𝑡=1

(𝑦𝑡 ∣ 𝑦<𝑡 , 𝑥𝑝) 

With top-k sampling: 

𝑦∗~𝑇 op-k-Sample(ℳ𝜃(⋅∣ 𝑥𝑝), 𝑘) 

 
3.4. Decision Scoring and Graph Alignment 

Define the score: 

Score(𝑦∗) = 𝜆1 ⋅ Coverage(𝑦∗, 𝒢𝑟) + 𝜆2 ⋅ DependencyMatch(𝑦∗, 𝒢) 
Where Coverage(𝑦∗, 𝒢𝑟) measures how many generated terms align with graph concepts. 

DependencyMatch ensures that no recommended course violates prerequisite constraints. 
Recommendations that do not satisfy the minimum threshold are discarded or re-generated with 
additional prompt refinement. And the overall generative decision algorithm is summarized below. 

 
Table 1.  
Generative decision algorithm. 

Step Operation 

1 Gr←𝒢𝑟 ←RetrieveRelevantSubgraph (𝒔, 𝒢) 

2 𝑥𝑝 ← 𝑇(𝒔, 𝒢𝑟) 

3 𝑦∗ ←ℳ𝜃(𝑥𝑝) via top-k sampling  

4 if Score (𝑦∗) < threshold then 

5     𝑦∗ ←Re-rank or re-prompt LLM with additional context 
6 end if 

7 return 𝑦∗ 

 
3.5. Model Specialization and Fine-Tuning 

To improve decision quality in the Argentine higher education context, especially for Spanish-
language content and culturally specific curricula (e.g., entrepreneurship education), we incorporate the 
following: 

Multilingual Prompting: All prompts and KG node labels are translated or constructed in bilingual 
form. 

Local Corpus Fine-Tuning: When using open-source models (e.g., LLaMA), we fine-tune on 
Argentine university course syllabi and Q\&A forums. 

Chain-of-Thought Prompting: Prompts explicitly ask the model to explain its reasoning steps, 
improving alignment with curriculum logic. 
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These enhancements enable more relevant and justifiable decision-making aligned with institutional 
goals. 

 

4. Dataset and Experimental Results   
4.1. Dataset and Data Preprocessing 

This study leverages both open educational data and domain-specific course data from Argentine 
universities to construct a comprehensive dataset for LLM-driven decision-making. Given that 
Argentina’s universities have gradually expanded online and specialized course offerings (e.g., 
entrepreneurship programs grew from only ~4% of universities in 1996 to 31% by 2003, we compile 
data from multiple sources to reflect the distance education context. In particular, we integrate a large-
scale open MOOC dataset with local course information. For general-purpose coverage, we utilize the 
MOOCCubeX open dataset– a large-scale, multi-modal MOOC dataset containing course syllabi, 
lecture transcripts, exercises, and millions of learner interaction logs – which provides rich content and 
a fine-grained concept graph for hundreds of online courses (including the Data Structures course) . To 
incorporate Argentine context, we supplement this with course syllabi, descriptions, and learning 
resource archives collected from distance education programs at several major Argentine universities 
(e.g., online entrepreneurship and computer science courses). The combined dataset thus spans diverse 
subjects and includes course outlines, instructional content, assessment items, and anonymized student 
engagement records, forming a robust foundation for experiments in LLM-assisted educational decision 
support. 

1. Data Collection: We adopted a multi-source data acquisition strategy. Relevant course materials 
were gathered from textbooks and university online platforms (for structured syllabi and lecture 
notes) as well as from MOOC repositories and educational forums (for additional unstructured 
content and discussions) . To automate this process, web crawlers were developed to 
systematically harvest curricular data (course titles, module descriptions, etc.) and student 
feedback from university websites and MOOC portals. We also included an existing curated 
dataset (MOOCCubeX) as a supplementary source to increase data diversity. Each source was 
chosen to ensure comprehensiveness and relevance – combining local Argentine courses (in 
Spanish) with a large-scale MOOC dataset provides both context-specific information and 
generalizable patterns. All collected raw data were then unified and stored for preprocessing. In 
total, the dataset covers N≈200 courses (including 50 from Argentine universities) along with 
associated resources (over 3,000 documents and 1.2 million interaction logs). 

2. Data Cleaning and Integration: Before analysis, extensive preprocessing was performed to clean 
and normalize the data. We removed duplicate entries (e.g., repeated forum posts or overlapping 
syllabus content) and corrected inconsistencies or errors in the raw text (such as OCR mistakes in 
scanned documents and variant spellings) . Missing values (for instance, unknown course 
metadata) were filled through cross-referencing official curriculum documents or using the 
MOOC data as proxy. Given the bilingual nature of the dataset (Spanish content from Argentina 
and primarily English content in MOOCCubeX), we applied language normalization procedures: 
non-English text was translated to English when necessary or processed with a multilingual 
model to preserve semantics, and technical terms were standardized across languages. We then 
merged data from heterogeneous sources into a unified format. This involved resolving semantic 
conflicts – e.g., aligning equivalent concepts in Spanish and English, and mapping synonyms to a 
common taxonomy – using NLP techniques to identify concept overlaps. For example, “algorithm 
design” vs “Diseño de algoritmos” were recognized as the same concept and merged. All course 
content was finally structured into a consistent representation, with fields for course title, module 
topics, learning objectives, assessment items, and interaction logs. The cleaned and integrated 
dataset was then stored in a database for subsequent processing. We chose a graph database 
(Neo4j) to store the structured knowledge, due to its ability to represent complex relationships 
and support efficient queries. 
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3. Knowledge Graph Construction: A core part of preprocessing was constructing a course 
knowledge graph for the academic content, which serves as a backbone for decision 
recommendations. We adopted and extended the methodology of Zhang et al. , using LLM-based 
text mining to extract key knowledge points and relations from the course documents. In practice, 
for each course we parsed the syllabus, lecture text, and related resources with a GPT-4 based 
extractor. We engineered prompts instructing the LLM to identify important concepts, topics, 
and prerequisite relationships within the course material. For example, the model was prompted 

with a course’s module description and asked to output a list of “(Concept A) –requires→ (Concept 
B)” pairs or hierarchy relations (“Module X includes Topic Y”). These LLM-generated outputs 
(i.e., candidate knowledge triples) were then validated against the content and consolidated. This 
approach allowed us to automatically derive the ontology of each course – including chapters, 
topics, subtopics, and their dependency links – with high accuracy and coverage, effectively 
simplifying the traditional manual knowledge extraction process. The extracted knowledge triples 
were saved in CSV and imported into Neo4j to form the knowledge graph structure. Each node in 
the graph represents an entity (course, chapter, topic, etc.), and edges represent relationships 
(such as “topic X is part of chapter Y” or “topic A is prerequisite for topic B”). This knowledge 
graph provides a machine-interpretable representation of the curriculum content, which the 
decision-making model can utilize for reasoning. 

 

 
Figure 2.  
Knowledge Graph for the "Data Structures" Course. 

 
Where a knowledge graph illustrating the structure of a Data Structures course. The graph is 

hierarchical, with the course node (blue) at the top, followed by module nodes (green), core topic nodes 
(orange), and subtopic nodes (red). Edges are labeled to show relationships: the course includes its 
modules; modules include their core topics; and topics include finer-grained subtopics. Dashed 
prerequisite arrows denote that understanding one topic may require knowledge of another (for 
example, Linked Lists is a prerequisite for Trees). This color-coded knowledge graph provides a clear 
visual of course content breakdown and dependencies, helping instructors and learners identify how 
concepts are organized and connected. 

After building the knowledge graphs for all courses, we performed a final consistency check. We 
ensured that cross-course references (e.g., a fundamental concept appearing in multiple courses) were 
consistently labeled, and we merged identical nodes where appropriate to avoid duplication in the 
knowledge base. The end result of preprocessing is a rich, structured dataset comprising cleaned textual 
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content and a multi-course knowledge graph. This dataset is well-suited for our LLM-based models: it 
not only provides high-quality input text for the generative model but also supplies a structured 
knowledge context that can be leveraged via prompt design or retrieval. In summary, our preprocessing 
pipeline (data cleaning, integration, and knowledge graph construction) establishes a solid foundation 
for developing LLM-enhanced educational decision systems, aligning with best practices in intelligent 
tutoring data preparation.  

 
4.2. Model Setup and Baselines 

For the experimental evaluation, we implement two categories of decision-support models: a 
baseline system using conventional methods and an LLM-enhanced system that leverages generative 
AI. The baseline is designed to mimic existing data-driven decision approaches without large language 
models, serving as a point of comparison. In contrast, the proposed LLM-based model integrates the 
generative capabilities and knowledge understanding of a large language model with the educational 
data prepared in Section 4.1. 

1. Baseline Methods: As a baseline for course recommendation and decision-making, we employ a 
knowledge-based recommender augmented with standard machine learning. This baseline system 
uses the constructed course knowledge graph and historical student-course enrollment data to 
recommend courses or learning resources in a non-generative manner. Specifically, it combines a 
content-based filtering approach – matching course content (topics, prerequisites) with a student’s 
profile or query using TF-IDF and graph similarity – and a collaborative filtering component 
using past enrollment and performance patterns. The baseline system does not generate natural 
language explanations; it simply outputs ranked recommendations or decisions based on hard-
coded heuristics and graph algorithms. For example, to suggest the next course for a student, the 
baseline might find courses whose prerequisites are all satisfied by the student’s completed 
courses and then rank them by popularity. Similarly, for a teaching decision (such as identifying 
at-risk students), the baseline might apply a decision tree trained on prior student performance 
data. These conventional strategies reflect the state-of-practice in data-driven educational tools, 
but they lack the deep semantic understanding and flexibility of LLMs.  

2. LLM-Enhanced Model: Our primary model uses GPT-4 (via OpenAI API) as the generative 
engine, combined with the domain knowledge from our dataset. We adopt a retrieval-augmented 
generation approach: when the LLM needs to make a recommendation or decision, it first 
retrieves relevant facts from the course knowledge graph (or student data) and then generates a 
decision output in natural language. To ground the LLM in educational context, we inject 
domain-specific knowledge as suggested by Hu et al. In practice, this means that we feed the LLM 
not only the user’s query or situation but also contextual information such as the student’s 
learning history and pertinent fragments of the knowledge graph (e.g., related course topics). We 
craft prompts that guide the model to simulate an expert educator’s decision process: the prompt 
template presents a scenario (for instance, “A student has completed courses X and Y with these 
outcomes… Given the curriculum graph, suggest the next optimal course and justify why.”). The 
model then utilizes chain-of-thought reasoning, reasoning through the knowledge graph 
connections to arrive at a recommendation. By explicitly incorporating educational theory and the 
structured curriculum data into the prompt, we ensure the LLM’s generations are aligned with 
sound pedagogical logic. We also fine-tuned a smaller open-source LLM (LLaMA-2 13B) on a 
portion of our dataset to compare its performance with GPT-4, although GPT-4 remained the 
primary model due to its superior zero-shot capabilities. 
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Figure 3.  
LLM-Assisted Educational Decision System Architecture. 

 
To summarize the model setup, Figure 4 illustrates our system architecture. The LLM model is at 

the core, interfacing with a knowledge graph database and a student modeling module. For each 
decision task (e.g., recommending a course, identifying intervention for a struggling student, or 
suggesting improvements to a course design), relevant data is retrieved from the dataset (course 
prerequisites, student performance records, etc.) and fed into the prompt. The LLM then generates a 
decision output (such as a ranked list of recommended courses with explanations, or a diagnostic report 
on student progress). The baseline system uses the same inputs but follows programmed logic or 
simpler ML models to produce an output without natural language reasoning. By comparing these two, 
we can evaluate the value added by the generative LLM component. 

We ensure fairness in comparison by configuring both systems to have access to the same 
information. The LLM’s prompt is restricted to dataset content that the baseline also uses (e.g., it 
cannot use external knowledge beyond the curriculum data provided). Both systems were executed on 
the test scenarios in an identical environment. In the next sections, we describe how we evaluate their 
performance and present the results. 

 
4.3. Evaluation Metrics 

We employ a range of evaluation metrics to quantitatively assess the performance of the baseline 
and LLM-enhanced models. The metrics cover recommendation quality, decision accuracy, and user-
centric measures to give a holistic view of the system’s effectiveness. 

• Recommendation Quality Metrics: For tasks involving course or resource recommendations, we 
use standard information retrieval metrics. In particular, Precision@K and Recall@K are calculated to 
measure how many of the top-$K$ suggestions are relevant. Relevance in our context is determined by 
whether the recommended course/resource matches the student’s needs or actual subsequent 
enrollment (based on ground truth data). We also report the Normalized Discounted Cumulative Gain 
(NDCG) to account for the ranking quality of recommendations, since ordering is important (higher 
NDCG means the model ranks more useful items higher). These metrics are computed for $K=5$ and 
$K=10$ across test cases. A higher Precision@5, for example, indicates that the top 5 recommendations 
are mostly appropriate for the student, reflecting better decision support. 

• Decision Accuracy: For decision-making tasks with a defined correct outcome (e.g., identifying 
the correct intervention for a dropout risk scenario, where we have a known best action from experts), 
we measure accuracy and agreement with human experts. When the model’s output is a categorical 
decision or classification, we compute the overall accuracy (percentage of correct decisions). However, 
many educational decisions are subjective, so we also use Cohen’s Kappa to gauge agreement between 
the model’s decisions and an expert consensus, beyond what would occur by chance. The Kappa statistic 
is useful for measuring consistency in scenario simulationsfile-ckfltjmgzk1zznipf3lujm. For instance, in 
a set of advising scenarios, if the LLM recommends the same course as the academic advisor panel did, 
it’s counted as agreement. A Kappa value close to 1 indicates strong agreement with human decisions, 
whereas 0 means no better than random. This helps evaluate the LLM’s ability to emulate expert 
judgment in complex educational contexts. 

• User Satisfaction and Usability: To evaluate the systems from a user perspective, we conducted 
a post-study survey (see Section 4.4). Quantitative results from the survey are summarized via metrics 
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like the average satisfaction rating (on a 5-point Likert scale) and the System Usability Scale (SUS) 
score. These capture how users (students and instructors) perceive the recommendations/decisions 
provided. While these are subjective metrics, they are crucial: a decision support system must not only 
be accurate, but also accepted by its end-users. For completeness, we also tracked response latency 
(average time taken to generate a recommendation) as a rudimentary efficiency metric, since real-time 
decision support is ideal. 

In addition to the above, we recorded qualitative feedback and analyzed it (Section 4.4) to interpret 
the quantitative results. All metrics are computed for both the baseline and LLM-based model on the 
same test cases, enabling a direct comparison of performance. The evaluation focuses on whether the 
LLM system can achieve equal or better accuracy than traditional methods while also improving the 
quality of recommendations and user satisfaction. 

 
4.4. User Feedback and Survey Analysis 

To complement the objective metrics, we carried out a user study involving both students and 
instructors to gather feedback on the system’s usefulness and usability. We deployed our decision 
support prototype in a small pilot at an Argentine university’s online program. Participants included 5 
instructors (course coordinators) and 50 students from various distance-learning courses. They 
interacted with the LLM-enhanced system over a two-week period – instructors used it for tasks like 
curriculum planning and identifying at-risk students, while students received course and resource 
recommendations via the system. After the trial, we collected feedback through questionnaires and 
interviews. 

Survey Design: The survey for students covered aspects such as perceived quality of 
recommendations, trust in the system’s suggestions, impact on learning motivation, and overall 
satisfaction. For instructors, questions focused on decision confidence, perceived accuracy of the 
system’s analyses, and efficiency gain in their decision-making workflow. Responses were given on a 5-
point Likert scale (from “strongly disagree” to “strongly agree”) and included open-ended comments. 
We also used standardized questions from the Technology Acceptance Model (TAM) to gauge ease of 
use and usefulness, and a few free-form questions for additional insights. 

Results – Student Perspective: The student feedback was overwhelmingly positive regarding the 
LLM-based recommendations. 75% of student respondents agreed or strongly agreed that the 
course/resource suggestions were relevant and helpful for their learning path. Notably, many students 
reported that the knowledge graph visualizations helped them understand how courses and topics are 
connected, thereby increasing their interest in the subject matter. In fact, although some students were 
initially unfamiliar with the concept of a knowledge graph, they found it “engaging and informative” 
after using the system. Overall, students praised the system’s interface and content presentation, citing 
that the recommendations were well-organized and easy to follow. Importantly, learning motivation 
and efficiency improved for a significant subset of students – several respondents noted that having a 
clear recommended learning path (with explanations from the LLM) made it easier to plan their studies, 
which in turn boosted their motivation to complete courses. For example, one student wrote that “the AI 
advisor understood my situation and pointed me to a course I actually enjoyed and found useful, saving me a lot of 
time.” In terms of quantitative ratings, the average satisfaction score among students was 4.3/5, and the 
system usability was rated high (SUS score = 85, which indicates excellent usability). 

Results – Instructor Perspective: Instructors also responded positively, albeit with some cautious 
notes. All five instructors agreed that the system provided valuable insights in decision-making, 
particularly in identifying patterns from student data that would have been time-consuming to analyze 
manually. Several highlighted that the LLM’s suggestions (for instance, how to support a student 
struggling with prerequisite concepts) aligned well with their own expert judgment. This aligns with 
findings by Hu et al. that GPT-4 can perform at a high level in simulating educational decision. In our 
study, instructors reported a noticeable reduction in decision-making time when using the tool – on 
average, they estimated it took 30% less time to analyze a class’s performance and decide on 
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interventions, thanks to the AI-generated summaries and recommendations. Moreover, instructors felt 
that the tool improved their confidence: the AI’s explanations served as a second opinion, validating 
their strategies or pointing out overlooked details. One instructor noted “the system’s recommendation 
came with a rationale that matched my own reasoning, which was reassuring.” Consistent with prior 
research , we observed a decrease in data analysis anxiety; instructors who were previously less 
comfortable interpreting large datasets about student performance found the conversational guidance of 
the LLM interface to be user-friendly and stress-reducing. On the TAM ease-of-use questions, the 
average rating was 4.6/5, indicating that even non-technical faculty could operate the system with ease. 

Comparative Feedback on Baseline vs LLM System: We also asked participants to compare the 
LLM-enhanced system with a baseline recommendation system (without explanations) in a blinded 
manner. Both students and teachers overwhelmingly preferred the LLM-based system. The key 
differentiator was the quality of explanations: 88% of users indicated that the natural language 
justifications and personalized advice provided by the LLM made the decision support more 
trustworthy and transparent than the baseline’s generic output. Many users appreciated how the LLM 
would explain why a certain course was recommended (“because it builds on your knowledge of X and 
aligns with your goal Y”), which the baseline system lacked. However, a few users did express concerns 
or suggestions: two instructors cautioned about over-reliance on the AI (emphasizing it should 
complement, not replace, human judgment), and some students requested an even more interactive 
interface (such as asking follow-up questions to the LLM). These insights will guide future 
improvements. 

In summary, the user study confirms that the generative LLM approach not only achieves strong 
objective performance but also attains high user satisfaction and acceptance. The combination of a 
knowledge graph backbone and GPT-4’s generative explanations was particularly well-received, 
corroborating the survey findings of prior personalized learning systems. Participants credited the 
system with making the online learning experience more engaging and decisions more data-informed, 
which is a promising indicator for broader deployment. 

 
4.5. Case Study and Visualization of Results 

To illustrate the effectiveness of our approach, we present a representative case study along with 
visualizations of the results. In this case study, a student from an Argentine distance learning program 
is seeking advice on course selection for the next semester. The student has completed introductory 
courses in programming and algorithms with average scores, and their goal is to enter an 
entrepreneurship-oriented software project course in the future. The decision-making task for the 
system is to recommend a suitable next course that both solidifies the student’s fundamentals and aligns 
with their entrepreneurial interest. 

LLM Recommendation Example: Using the student’s profile as input, the baseline system suggested 
a generic intermediate programming course. In contrast, our LLM-enhanced system recommended 
“Data Structures (Level II)” with a detailed explanation. The LLM noted that Data Structures (Level II) 
covers essential algorithms that the student struggled with in the introductory course (reinforcing 
fundamentals), and it highlighted that mastering these would be important before tackling project-based 
or entrepreneurship courses. It also pointed out that this course is a prerequisite for an upcoming 
“Technology Entrepreneurship” course (information gleaned from the knowledge graph), thus directly 
supporting the student’s long-term goal. This rich justification not only gives the recommendation itself 
but contextualizes it within the student’s academic pathway, demonstrating the LLM’s ability to 
connect data points across the knowledge graph. The student in the case study followed the advice, and 
subsequent feedback indicated that the recommendation was indeed helpful. 
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Figure 4.  
Precision@5 and Recall@5 – Baseline vs. LLM Models. 

 

 
Figure 5.  
Satisfaction Ratings from Students and Instructors (Baseline vs. LLM). 

 
Visualization of Performance: The overall experimental results are summarized in Figure 4 and 

Figure 5. Figure 4 (a bar chart) compares the Precision@5 of the baseline and LLM-based recommender 
across different student profiles. The LLM system consistently outperforms the baseline, with an 
average Precision@5 of 0.82 versus 0.67 for the baseline, indicating it suggests more relevant courses in 
the top 5 recommendations. Similarly, Figure 4 shows higher Recall@5 for the LLM system, 
demonstrating its ability to cover more of the relevant options that a student eventually takes or values. 
Figure 5 visualizes the user satisfaction ratings from the survey: it plots the distribution of student and 
instructor satisfaction scores for both systems. The chart clearly illustrates that a majority of users 
rated the LLM system in the highest satisfaction tier (4 or 5 out of 5), whereas the baseline system’s 
ratings were more spread out, with a significant portion in the neutral range. These visualizations 
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corroborate our quantitative findings that the generative LLM approach not only improves objective 
metrics but is also preferred by users. 

In addition, we include a visualization of a portion of the knowledge graph used in one decision 
episode (Figure 2, earlier in Section 4.1). This graph was crucial in enabling the LLM to trace 
prerequisite relationships. For example, the highlighted path in the graph showed that the Data 
Structures (Level II) course covers “Algorithm Optimization” which is a required concept for the later 
Technology Entrepreneurship project – this path was cited by the LLM in its explanation. This 
demonstrates how the knowledge graph visualization can be used by human stakeholders alongside the 
AI’s recommendations to understand the rationale behind decisions. In practice, such visual aids help 
build trust in the system, as noted by several instructors who appreciated seeing the map of how courses 
connect. 

Overall, the case study and accompanying figures reinforce the benefits of our proposed system. The 
LLM-based model, informed by a well-structured dataset and knowledge graph, provides more accurate, 
context-aware, and user-aligned decisions compared to traditional methods. The visualizations of both 
the model’s internal knowledge (via graphs) and the experimental outcomes (via charts) provide clear 
evidence of the system’s advantages, making a strong case for the integration of generative LLMs in 
distance education decision-making workflows in Argentine universities and beyond. 

 
5. Conclusion 

In conclusion, this study has presented a novel generative LLM-based decision design for distance 
education in Argentine universities, integrating a carefully constructed course knowledge graph and 
student profile data with advanced prompt engineering to drive personalized, real-time academic 
recommendations. Our approach leverages the strengths of large language models to generate 
contextually rich and pedagogically sound decisions while addressing traditional limitations such as 
hallucinations and domain misalignment. Preliminary evaluations demonstrate promising 
improvements in recommendation relevance, fairness, and decision transparency, suggesting that LLM-
powered systems can serve as effective decision support tools in modern, dynamic learning 
environments. Future work will refine these techniques further and explore broader deployment in 
diverse educational settings. 
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