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Abstract: Wind turbine blade icing significantly impacts the safety of wind farms and the efficiency of 
power generation, making precise and timely prediction a critical challenge. This study proposes an 
innovative deep learning framework that integrates Convolutional Neural Networks (CNNs) and 
Bidirectional Gated Recurrent Units (BiGRU) to enhance icing prediction. CNNs extract spatial 
features, while BiGRU captures temporal dependencies, enabling the model to effectively distinguish 
icing occurrences. To improve model optimization, cosine annealing was employed for dynamic learning 
rate adjustment, while cross-entropy loss was used to address class imbalance. Experimental results 
demonstrate that a 2-layer CNN architecture trained over 50 epochs achieves a balance between 
accuracy and computational efficiency, with CNN_2Layer-BiGRU attaining 96.55% accuracy and a 
96.51% F1-score, outperforming traditional models. This approach reduces dependency on manual 
feature engineering, improves prediction accuracy and computational efficiency, and provides a 
foundation for an intelligent diagnostic system for wind turbine blade icing prediction. 

Keywords: Bidirectional Gated Recurrent Units, Convolutional Neural Networks, Cosine annealing, Cross-entropy loss, 
Wind turbine blade icing. 

 
1. Introduction  

With the increasingly serious problems of  carbon dioxide emissions, acid rain and energy shortage, 
wind energy, as a sustainable and environmentally friendly energy source that avoids the environmental 
pollution problems faced by traditional energy sources, has become a priority development direction for 
countries around the world. China is a vast country with vast grasslands and a long coastline and is rich 
in wind energy resources. However, these vast wind energy resources are primarily located in the cold 
northern regions and the humid, frigid southern areas, where environmental conditions are particularly 
harsh. 

During wind turbine operation, especially at sub-zero temperatures, blade icing can occur when 
exposed to humid air, rain, salt spray or snow, and especially when exposed to cooling water droplets. As 
illustrated in Figure 1, captured using an Unmanned Aircraft System (UAS) imaging system at a 
mountainous wind farm in Hunan Province, China, blade icing can severely impact wind turbines. This 
is evident from the substantial increase in ice load on the blades due to icing accumulation. The uneven 
ice load on each blade increases the unbalanced load on the unit, which can affect the service life of  the 
blades [1]. If  the unit continues to operate, it may cause serious damage to the equipment; if  the unit is 
shut down, it will significantly reduce the efficiency of  wind power generation in low temperature areas. 
Blade icing changes the aerodynamic profile of  the blades: due to the uneven thickness of  the ice on all 
parts of  the blades, the original aerodynamic properties of  the blades are altered, which significantly 
reduces the load carrying capacity and power output of  the wind turbine, thus significantly reducing the 
efficiency of  the power generation [2]. In severe cases, the turbine may not even be able to start 
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generating electricity. When ice forms on the blade surface, it falls off  as the temperature rises: this 
poses a safety threat to personnel and equipment on site and increases operational risks. Therefore, 
developing wind turbine blade icing prediction models is crucial for practical applications in industry, 
helping companies enhance operational efficiency and minimize risks. 
 

 
Figure 1. 
Icing Condition of  Hunan Wind Farm, China. 

 
Currently, wind turbine blade icing diagnosis methods are generally classified into direct and 

indirect approaches [3] . The direct method directly monitors the blade surface through sensors or 
equipment, and commonly used technologies include blade icing prediction system [4] infrared optical 
image processing [5] and hyperspectral imaging [6] etc. These methods have high real-time and 
accuracy and can directly reflect the icing status of  the blade. These methods have high real-time 
performance and accuracy and can directly reflect the icing status of  the blade. However, direct methods 
usually require additional hardware equipment, which is costly and less reliable in harsh environments, 
making it difficult to be widely applied to large-scale wind farms. 

In contrast, the indirect method diagnoses by analyzing the relationship between blade 
characteristics and icing features, which is further classified into physical model-based and data-driven 
approaches. Tao, et al. [7] extracted hybrid features reflecting both short-term and long-term icing 
effects based on potential physical icing accumulation processes and developed a stacked-XG Boost 
model for blade icing diagnosis. Jiménez, et al. [8] introduced a pattern recognition approach utilizing 
guided ultrasound and machine learning to detect icing on wind turbine blades. While Xiang, et al. [9] 
proposed a new fault prediction and diagnosis system by combining ultrasound technology with wavelet 
transform. Physical model-based methods rely on small-scale experiments and mathematical modeling, 
and the results are difficult to generalize to large-scale wind turbine applications. 

The data-driven approach leverages operational data from the Supervisory Control and Data 
Acquisition (SCADA) system and integrates machine learning or deep learning techniques to extract 
icing features, making it especially suitable for large-scale wind turbine applications Ye and Ezzat [10]. 
Muñoz, et al. [11] proposed a multiscale wavelet-driven transformer (MWT)-based method, which 
integrates Discrete Wavelet Decomposition (DWD) and Transformer Blocks, to extract multiscale 
features from wind turbine sensor data from wind turbine sensor data to extract multi-scale features. 
Additionally, Cheng, et al. [12] introduced a deep category imbalance semi-supervised (DCISS) model 
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to estimate wind turbine blade icing. The model combines category imbalance learning with semi-
supervised learning (SSL) and enhances feature extraction with a channel-calibrated attention module. 

In data-driven approaches, machine learning models such as deep fully connected neural networks 
(FCNN) [13] support vector machines and random forest models [14] and models based on 
convolutional neural networks (CNNs) and bidirectional long- and short-term memory networks 
(BiLSTMs) [15] have been applied to leaf icing prediction with some success. With the deepening of 
research, more complex deep learning models have been proposed, which further advance the accuracy 
of diagnostic methods. Lai, et al. [16] proposed an efficient and accurate leaf icing diagnostic method 
using a hybrid feature extraction method including recursive feature elimination (RFE) and sliding 
window algorithms, which was validated in combination with the B-SMOTE-Bi-GRU model. Kreutz, et 
al. [17] proposed a selective deep integration method based on the Selective Deep Integration (GSDE) 
model of GMDH, which combines multiple neural networks to form multiple deep neural networks 
based on focal loss for wind turbine blade icing prediction. In addition, Li, et al. [18] proposed a method 
combining the Feature Selection algorithm and the 1D-CNN-SBiGRU model to solve the high-
dimensional and unbalanced data problems through feature selection and data reconstruction. 

Although existing methods are excellent in improving accuracy, many complex features engineering 
and multi-model integration methods require long computation time, which is difficult to meet the 
needs of wind farms for efficiency and fast response. Therefore, this paper introduces a deep learning 
model that integrates a convolutional neural network (CNN) with a bi-directional gated recurrent unit 
(BiGRU) to enhance short-term wind turbine blade icing prediction. The model accurately models the 
icing state by efficiently extracting the spatial features through CNN and capturing the time series 
relationship through BiGRU. By incorporating the cosine annealing learning rate and cross-entropy 
loss function, the training process is optimized, leading to significant improvements in accuracy and 
efficiency. This approach ensures real-time prediction capabilities and meets enterprise demands for fast 
and effective computation. 
 

2. Relevant Studies 
2.1. CNN Algorithm 

As a variant of feedforward neural networks, Convolutional Neural Networks (CNNs) have been 
increasingly applied in natural language processing (NLP) research in recent years [19]. A CNN 
primarily consists of three key components: the input layer, convolutional and pooling layers, and the 
fully connected layer [20]. 

Feature extraction in the convolutional layer begins by encoding text as a word vector matrix, 
which is then processed using convolutional filters of various kernel sizes. These filters operate with 
fixed parameter values during the scanning process, ensuring consistency in feature prediction. The 
output is a feature map, where each element is generated through filtering with identical convolutional 
parameters. The structure of the CNN is illustrated in Figure 2. 
 

 
Figure 2. 
CNN Network Architecture [21]. 
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In convolutional neural networks (CNNs), the increase in the number of layers has a significant 
effect on the feature extraction ability and overall performance of the model [22]. Generally, increasing 
the number of layers can improve the network's ability to extract higher-order features, but too many 
layers may lead to problems such as overfitting or gradient vanishing [23] . Therefore, choosing the 
appropriate number of layers is crucial for model performance. 
For multilayer CNN, the layer-by-layer process of feature extraction is expressed as follows. 

𝐻(𝐿) = 𝑓(𝑊(𝐿) ∗ 𝑓(𝑊(𝐿−1) ∗ ⋯𝑓(𝑊(1) ∗ 𝐻0 + 𝑏1) + ⋯𝑏(𝐿−1)) + 𝑏(𝐿))       (1) 
 

Where L represents the total number of convolutional layers, H(L) denotes the output feature map 

of the Lth layer, W(L) is the convolutional kernel weight matrix, and b(L)represents the bias term. The 

function f() applies a nonlinear activation, while ∗signifies the convolution operation. 
 
2.2. The BIGRU Algorithm 

The Gated Recurrent Unit (GRU), a variant of the Recurrent Neural Network (RNN), is specifically 
designed to address the issues of gradient vanishing and explosion that occur in standard RNNs when 
processing long sequential data [24]. GRUs regulate information flow through gating mechanisms, 
such as update and reset gates, enabling more efficient capture of long-term dependencies while 
minimizing computational complexity [25]. However, the unidirectional structure of the traditional 
GRU can only learn from time-series historical information [26] and cannot utilize future information, 
while in wind turbine icing prediction, the time-series nature of SCADA data needs to be fully explored 
for contextual dependencies [21]. 

For this reason, Bidirectional GRU (BiGRU for short) is introduced. BiGRU enhances the model’s 
ability to capture temporal dependencies by incorporating both forward and backward GRU sub-
networks, allowing it to utilize past and future information for a more comprehensive representation of 
time series features. The core of BiGRU consists of update gates and reset gates, which are used for the 
control of the state updating and forgetting information, and its bi-directional structure is able to 
synthesize the feature representations of the front and back time steps. 
For the input time series X={ x1 ,x2 ,... ,xT-1 ,xT}, BiGRU is computed as follows. 

                      ℎ𝑡 = [ℎ⃗ 𝑡; ℎ⃗⃖𝑡], 𝑡 = 1,2⋯𝑇
                       

 (2)
 

Where GRU(xt,ht-1) represents the hidden state of the forward GRU, andGRU(xt,ht+1) denotes the 
hidden state of the reverse GRU. The final output is obtained by concatenating these forward and 
backward hidden states. The hidden state sequence H = {h1,h2,...,hT}, extracted by BiGRU, effectively 
captures bi-directional contextual information from the time series. This comprehensive representation 
is then mapped to the predicted icing state through a fully connected layer, enabling precise wind 
turbine icing prediction. 
 
2.3. Joint CNN-BiGRU Mechanism 

This paper presents a wind turbine icing prediction model that integrates CNN with Bi-directional 
GRU to enhance predictive performance.CNN is used to extract spatial features of  wind turbine 
SCADA data, while BiGRU processes time series data through its bi-directional structure to capture 
forward and backward contextual information for better understanding of  the temporal properties of  
the data. CNN firstly performs the input data Convolutional operation is performed to extract the low-
level features and reduce the dimensionality through pooling layer to retain the important spatial 
information. Then, BiGRU partially extracts more comprehensive features from the past and future 
information of  the time series to improve the model's ability to capture temporal dependencies. 
The architecture of  the model (e.g., Figure 3) consists of  five main components: an input layer, a 
convolutional layer, a BiGRU layer, an output layer, and a final predicted output. The data is first passed 
through a CNN layer for feature extraction, followed by a BiGRU layer to capture the timing 
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information, and finally an output layer to generate the prediction results.The model's output is typically 
a fully connected layer that transforms extracted features into target predictions. 

�̂� = 𝑊𝑂𝑈𝑇 ∙ ℎ + 𝑏𝑜𝑢𝑡                            (3) 

Where �̂� represents the predicted output, 𝑊𝑂𝑈𝑇 is the weight matrix of  the output layer, h denotes 

the features extracted from previous layers (CNN and BiGRU), and 𝑏𝑜𝑢𝑡 is the bias term of  the output 
layer. 
 

 
Figure 3. 
CNN-BiGRU Algorithm Architecture [27]. 

 
The joint CNN-BiGRU mechanism demonstrates the flow of  data from input to feature extraction 

to final output, fully utilizing the advantages of  convolutional networks in spatial feature extraction and 
BiGRU in time series modeling. 
 
2.4. Optimization Model and Loss Function Selection               

During debugging, the cosine annealing learning rate scheduler is introduced to dynamically adjust 
the learning rate, enhancing training efficiency and model performance. Cosine annealing, inspired by 
Simulated Annealing, gradually decreases the learning rate, helping the model converge more smoothly 
toward the global optimal solution in the final stages of  training [28]. 
The cosine annealing learning rate equation is given by. 

      𝜂𝑡 = 𝜂𝑚𝑖𝑛 +
1

2
(𝜂𝑚𝑎𝑥−𝜂𝑚𝑖𝑛) (1 + cos (

𝑡

𝑇𝑚𝑎𝑥
𝜋))              (4) 

The learning rate at the current training step is denoted as 𝜂𝑡, with 𝜂𝑚𝑎𝑥 and 𝜂𝑚𝑖𝑛 representing its 
upper and lower bounds, respectively. Here,t indicates the current training step, while Tmax defines the 
annealing period, specifying the total number of steps over which the learning rate is adjusted. 

In the icing prediction task, in order to measure the difference between the model's predicted 
probability distribution and the actual categories, we introduce the Cross Entropy Loss function as the 
optimization objective function [29]. Since the icing problem can be regarded as a binary categorization 
problem of  icing and non-icing, the properties of  the Cross Entropy Loss function are well suited to the 
needs of  such a task. Specifically, the Cross Entropy Loss function can accurately calculate the difference 
between the model's predicted probability distribution and the true category labels to help the model 
learn the classification boundaries better, especially in the face of  category imbalance, and can effectively 
avoid the model's prediction biased towards the large category (i.e., the non-icing state). 

L = −
1

N
∑ ∑ yij log(ŷij)

C
j=1

𝑁
𝑖=1                        (5) 

Here, N represents the total number of samples, while C denotes the number of categories within 
the icing classification. In the wind turbine icing task, this classification is simplified into a binary 
distinction between icing and non-icing, setting C=2. The variable yij indicates the true label of sample i 

for category j, and ŷij represents the model's predicted probability for category j. 
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Moreover, the cross-entropy loss function helps minimize the misclassification of  icing state 
samples by refining prediction probabilities. In wind turbine blade icing prediction, it enhances the 
learning of  rare icing cases by adjusting the weights of  smaller errors, ultimately improving the 
model’s accuracy and robustness in real-world applications. Integrating the cosine annealing learning 
rate scheduler, the cross-entropy loss function enhances the training process, ensuring efficient learning 
at each stage and leading to more stable and precise predictions. 
 
Table 1. 
Partial Monitoring Parameter Information of  Wind Turbine Units. 

Serial Number Variable Name Description Serial 
Number 

Variable Name Description 

1 Wind_speed Wind speed (m/s) 9 Pitch_angle (1,2,3) Blade pitch angle (°) 

2 Generator_speed Generator speed (rpm) 10 
Pitch_moto_tmp 

(1,2,3) 
Pitch motor temperature 

(°C) 

3 Power (kw) Generated power (kW) 11 Acc_xx 
Nacelle X-axis 

acceleration (m/s²) 

4 
Wind_direction 

(°) Wind direction (°) 12 Acc_yy 
Nacelle Y-axis 

acceleration (m/s²) 

5 
Wind_direction_

mean 
Average wind direction 

(°) 13 Environment_tmp 
Ambient temperature 

(°C) 

6 Yaw_position Yaw position (°) 14 Int_tmp 
Internal nacelle 

temperature (°C) 

7 Yaw_speed Yaw speed (°/s) 15 
Pitch_ng5_tmp 

(1,2,3) 
NG5 pitch system 
temperature (°C) 

8 
Pitch_speed 

(1,2,3) Blade pitch speed (°/s) 16 
Pitch_ng5_DC 

(1,2,3) 
NG5 pitch DC bus 

voltage (V) 

 

3. Arithmetic Simulation and Analysis 
3.1. Input Feature Selection 

This study gathered wind turbine blade icing data from a wind farm located in Hunan Province, 
China, utilizing turbines produced by Harbin Electric Group. The SCADA data was recorded from 
December 1 to December 30, with a 7-second data sampling interval, covering multiple monitoring 
variables. From hundreds of  sensor data, the engineers were able to identify 26 key variables related to 
blade icing and pinpointed when the icing occurred. Specific variable information is detailed in Table 1. 
 
3.2. Data Pre-Processing 

To enhance the accuracy of  wind turbine blade icing forecasting and minimize the impact of  
redundant features on the model, this study introduces a feature-enhanced deep learning approach for 
predictive analysis. First, comprehensive preprocessing is performed on the SCADA data, including 
operations such as outlier removal, normalization, normalization, and data labeling and segmentation. 
Subsequently, a convolutional neural network (CNN) is used to extract power features and transform 
them into power mean square error features to achieve feature enhancement. Next, the CNN-BiGRU 
deep learning model is developed by integrating the spatial feature extraction capability of  CNN with 
the temporal modeling strength of  BiGRU. Through analyzing and diagnosing the spatio-temporal 
characteristics of  wind turbine blade operation data, the model effectively predicts blade icing 
conditions with high accuracy. The detailed process is illustrated in Figure 4. 
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Figure 4.  
Blade Ice Prediction Flowchart [13].  

 
The data utilized in this study was obtained from the SCADA system; however, it contained 

anomalies, redundant entries, and missing values. In order to mitigate the impact of  these issues on 
model training and evaluation, the following integrated data preprocessing process was implemented: 

(1) Data reading and preliminary screening 
Iterate through all files in the data directory and perform preliminary screening based on specific 

keywords in the file names. Only eligible CSV files are retained for further analysis. 
(2) Data Labeling and Missing Value Filling 
Experienced wind turbine engineers labeled the raw data as either "normal" or "iced". To ensure 

data continuity and integrity, missing values were filled in using the fillna() method. This prevents gaps 
in the time series from affecting subsequent analysis and model training. 

(3) Data Standardization and Segmentation 
 Since SCADA data are time series data collected from sensors at fixed intervals, they need to be 

standardized and segmented to meet the input requirements of  the CNN-BiGRU wind turbine blade 
icing prediction model: 

- Standardization: Min-Max standardization method is used to scale the feature values to the range 
of  [0, 1] to reduce the impact of  unit and magnitude differences between different features on the 
model. The standardization formula is as follows: 

                            𝑋′ =
𝑋−𝑋min

𝑋max−𝑋min
                          （6） 

Where X′ represents the pre-processed feature data, X refers to the original data, and Xmax and Xmin 
indicate the maximum and minimum feature values, respectively. 

- Segmentation: Segment the normalized time series data into fixed length segments (500 data 
points per segment) to fit the input format of  the model. 

(4) Icing data processing 
 The same preprocessing steps, including segmentation and normalization, were applied to the icing 

data. In addition, fault data from other data sources are extracted, preprocessed using a consistent 
methodology, and integrated into the overall dataset. 

Through the preprocessing steps described above, the SCADA data is converted into a structured, 
clean, and standardized format suitable for model training and prediction, thereby improving the 
reliability and accuracy of  the wind turbine blade icing prediction system.                            
 
3.2. Evaluation Metrics 

This study evaluates the proposed model using unbalanced data, where the number of  abnormal 
(icing) samples is much smaller than the number of  normal (non-icing) samples. This imbalance may 
lead to inflated accuracy scores, thus making the model evaluation inaccurate.Since this study 
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concentrates on wind turbine blade icing, where icing and non-icing conditions are treated as positive 
and negative samples, respectively, Precision, Recall, F1-Score, and Matthews Correlation Coefficient 
(MCC) are adopted as performance evaluation metrics. Their definitions are as follows: 

                          𝑃𝑟 𝑒 𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (7) 

                            𝑅ecall=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (8)                               

                          𝐹1 =
2×𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒 𝑐𝑎𝑙𝑙

𝑃𝑟 𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒 𝑐𝑎𝑙𝑙
                     (9)       

 
                            ACC=

TP+TN

TP+FP+TN+FN
                      (10)

 
                       𝑀𝐶𝐶 =

𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
            (11)

 TP, FP, FN, and TN represent true positives, false positives, false negatives, and true negatives, 
respectively. 
 

4. Experiments and Discussions 
4.1. Baseline Comparison 

In order to verify the validity of  the proposed model, we selected several common time series 
modeling methods as baseline models for comparison, including LSTM, BiLSTM, GRU, BiGRU and 
CNN-BiGRU. The reasons for selecting these baseline models are as follows: 

LSTM (Long Short-Term Memory) [30]: LSTM, a well-established Recurrent Neural Network 
(RNN) variant, is specifically designed to address long-term dependency challenges in sequential data. 
In this study, a 2-layer LSTM architecture is utilized, with hidden units selected from (8, 16, 32, 64). 
The model with the highest performance is ultimately chosen for evaluation. 

BiLSTM (Bidirectional LSTM) [31]: BiLSTM extends LSTM by incorporating a bidirectional 
mechanism, enabling the model to learn both past and future contextual information simultaneously. 
The same experimental setup as LSTM is applied for comparison. 

GRU (Gated Recurrent Unit) and BiGRU (Bidirectional GRU): These models, described in Section 
2.2, adopt gating mechanisms to optimize memory usage and improve computational efficiency in 
sequential learning tasks. 

CNN-BiGRU (Convolutional and Bidirectional GRU Combined Model): This model integrates CNN 
for spatial feature extraction and BiGRU for temporal sequence modeling, enhancing the representation 
of  spatio-temporal dependencies. By effectively capturing complex patterns in large datasets and short 
time series, CNN-BiGRU demonstrates strong applicability in wind turbine blade icing prediction. 

The model training and evaluation were conducted on a Windows 10 platform utilizing the 
PyTorch 1.8.1 deep learning framework, with Python 3.8 as the programming environment. The 
corresponding experimental results are presented in Table 2. 
 
Table 2. 
Baseline model comparison results. 

Model Accuracy Precision Recall F1-score MCC 

CNN 77.6% 77.6% 77.8% 77.6% 55.4% 

LSTM 76.4% 77.7% 75.4% 75.6% 53.1% 
BiLSTM 74.1% 74.1% 74.3% 74.1% 48.4% 

GRU 69.5% 73.2% 71.0% 69.1% 44.2% 
BiGRU 81.6% 81.9% 81.1% 81.3% 63.0% 

CNN-BiGRU 85.6% 85.6% 85.9% 85.6% 71.5% 

 
From the results, it can be seen that BiGRU has the best overall performance with an Accuracy of  

85.6%, which is better than other time series models. This indicates that BiGRU can capture the time-
series features of  SCADA data more effectively, which is more advantageous for the task of  wind 
turbine blade icing prediction. However, the performance of  the traditional RNN structure on SCADA 
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data still has some limitations in terms of  insufficient feature extraction capability and high model 
complexity. Therefore, we further explore the performance of  different deep learning architectures in 
feature extraction (see 4.3). 
 
4.2. Sensitivity Experiments 

To further assess the influence of  various factors on the effectiveness of  the wind turbine blade 
icing prediction model, two sensitivity analyses were performed: examining the effect of  a shallow CNN 
architecture on model performance and evaluating the impact of  training iterations on overall accuracy. 
 
4.2.1. Impact Of  Shallow CNN Architecture on Model Performance 

In order to investigate the performance of  CNN networks with different depths in wind turbine 
blade icing prediction, we designed a CNN model containing 1, 2 and 3 convolutional layers and 
conducted sensitivity experiments. The experimental results are shown in Table 4, with the increase of  
the number of  CNN layers, there is a significant improvement in the F1-score, but the balance between 
the performance and the computational cost is of  concern. 
 
Table 3. 
Comparison of  Performance and Computational Cost for Different CNN Layer Depths. 

Number of  Layers Accuracy F1-score Number of  Parameters Training Time (seconds/epoch) 
CNN_1Layer 94.83% 94.79% 4354 5 

CNN_2Layer 96.55% 96.51% 16706 8 
CNN_3Layer 95.98% 95.92% 29058 23 

 
1-layer CNN. This model has the lowest computational cost (training time 5 sec/epoch), but the F1-

score is only 94.79%, which indicates that it is deficient in the balance of  precision and recall and is 
prone to misprediction or omission. 

2-layer CNN.  Performs best among all models with an F1-score of  96.51%, while the accuracy is 
improved to 96.55%. The model strikes an optimal balance between accuracy and recall, and the training 
time is relatively controllable (8 sec/epoch) for the wind turbine icing prediction task. 

3-layer CNN. After further increasing the number of  CNN layers, the F1-score is improved 
(95.92%), but the increase is limited, while the computational overhead is significantly increased 
(training time 23 sec/epoch). Although the performance of  the model is still high, its advantage over 2-
layer CNN is not obvious considering the training cost. 
 

 
Figure 5. 
Comparison of  Performance and Computational Cost for Different CNN Layer Depths. 
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From the visualization results in Fig. 5, it can be seen that 2-layer CNN achieves the best 
performance in terms of  accuracy, F1-score, precision and recall, with the F1-score as high as 96.51%. 
In contrast, the accuracy and recall of  1-layer CNN are low, which is difficult to meet the actual 
demand, while 3-layer CNN has some improvement, but the computational cost increases more, which is 
less cost-effective. Therefore, in the wind turbine blade icing prediction task, 2-layer CNN achieves the 
best balance between performance and computational cost and is a more ideal choice. 
 
4.2.2. Effect of  Training Rounds on Model Performance 

To further explore the impact of  training iterations (Epochs) on model performance, experiments 
were conducted with Epoch values of  30, 50, and 80, assessing Accuracy, Precision, Recall, F1-score, 
and training duration. The corresponding experimental results are presented in the following table. 
 
Table 4. 
Impact of  Epochs on Model Performance and Training Time. 

Epoch Accuracy Precision Recall F1-score Training Time (minutess) 
30 62.06% 70.99% 64.43% 59.72% 7 

50 94.25% 95.19% 93.75% 94.14% 12 

80 96.55% 96.79% 96.34% 96.51% 31 

 
In addition, Figure 6 depicts the evolution of  the loss function over varying epochs, offering a 

comprehensive assessment of  the model's convergence properties and generalization performance. 
Experimental results indicate that an increase in training iterations significantly impacts both model 
accuracy and computational complexity. 
 

        
Figure 6. 
Loss Curve for Different Epochs during Model Training. 

 
(1) Epoch=30 

The training time is only 7 minutes, but the accuracy (62.06%) and F1-score (59.72%) of  the model 
are low, indicating insufficient training, limited feature extraction capability, and unsatisfactory model 
performance on the classification task. 
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(2) Epoch=50 
The accuracy (94.25%) and recall (93.75%) of  the model are greatly improved, and the F1-score 

reaches 0.9414, which indicates that the model has basically converged and is able to distinguish the 
samples efficiently, meanwhile the training time is controlled to be 12 minutes, which is within the 
permissible range of  the computational resources, and it has a high practicability. 

(3) Epoch=80 
The model performance is further improved (accuracy 96.55%, F1-score 96.51%), but the gain 

compared to Epoch=50 is limited. In addition, the training time increased significantly to 31 minutes, 
with a substantial increase in computational cost. From the loss curves, there were more obvious 
fluctuations during the training process, indicating that the model may have entered the overfitting 
stage and the generalization ability decreased. 

Taking into account the model's performance, computational cost, and generalization 
capability,Epoch=50 achieves an optimal balance between performance and computational resource 
consumption. On the one hand, it can effectively reduce the risk of  overfitting, while ensuring the 
stability and reliability of  the model in the task of  wind turbine blade icing prediction. Therefore, in the 
subsequent experiments, we choose Epoch=50 as the optimal number of  training rounds to ensure the 
model's generalization ability and practical application value. 
 
4.3. Deep Learning Architecture Comparison 

IIn Section 4.2.1, we examine how the number of  CNN layers impacts the effectiveness of  wind 
turbine blade icing prediction. The experimental findings indicate that increasing the CNN layers (to 2 
or 3) enhances the model's performance. However, as a feature extraction tool, CNN is limited by the 
design of  network structure, and there is still room for optimization. To further explore better feature 
extraction strategies, we introduce multiple deep learning architectures to evaluate the suitability of  
diverse models for this task. 

In this experiment, six distinct architectures were selected to comprehensively explore the temporal 
information and complex relationships within SCADA data. These architectures encompass a variety of  
feature extraction methods, including temporal attention, graph neural networks, and residual learning. 
The specific experimental results are presented in Table 5. 

TAPNet (Temporal Attention Network) [32]: This model employs a temporal attention mechanism 
to enhance focus on critical time points, improving prediction accuracy by assigning adaptive weights to 
input data from different time steps. 

GTAN (Graph Temporal Attention Network) [33]: By integrating Graph Neural Networks (GNN) 
with Temporal Attention Mechanisms, GTAN effectively captures correlations between turbines, 
thereby improving the prediction of  icing risks in multi-turbine systems. 

CBAM (Convolutional Block Attention Module) [34] : CBAM incorporates channel and spatial 
attention mechanisms into the CNN architecture, enabling the model to prioritize critical features while 
suppressing irrelevant noise. This design demonstrates exceptional performance in icing state 
prediction. 

ResNet (Residual Network) [35]: ResNet addresses the gradient vanishing problem in deep 
networks through residual connections, allowing the model to efficiently learn complex features from 
SCADA data and better model the dynamics of  wind turbine blade icing processes. 

MLP (Multi-Layer Perceptron) [36] : Although MLP, composed of  fully connected layers, exhibits 
limited capability in time series modeling, it remains effective in capturing underlying data trends and 
serves as a reliable benchmark model. 

CNN_2Layer-BiGRU (Convolutional and Bidirectional GRU Combined Model): This model 
combines CNN for spatial feature extraction with BiGRU for temporal information processing. The 
integration enhances the model's ability to represent both spatial and temporal features, making it 
highly suitable for wind turbine blade icing prediction. 
 



2678 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 4: 2667-2680, 2025 
DOI: 10.55214/25768484.v9i4.6638 
© 2025 by the authors; licensee Learning Gate 

 

Table 5. 
Comparison of  Performance Across Different Deep Learning Architectures. 

Model Accuracy Precision Recall F1-score MCC 

TAPNet 67.82% 69.08% 68.63% 67.75% 69.19% 
GTAN 84.48% 84.48% 84.71% 84.46% 37.70% 
CBAM 69.64% 66.75% 65.97% 64.75% 32.71% 
ResNet 91.38% 91.36% 91.28% 91.31% 82.64% 
MLP 85.63% 85.74% 85.96% 85.62% 71.70% 
CNN_2Layer-BiGRU 96.55% 96.79% 96.34% 96.51% 93.13% 

 
The experimental results discovered indicate that the CNN_2Layer-BiGRU model achieves the best 

index performance among the four supervised models. The accuracy is 96.55% with recall and precision 
of  above 96%, which is clearly the best chance among others. Hence, it is obvious the approach of  joint 
CNN and BiGRU exhibits remarkable benefits in SCADA data time-series modeling and feature 
selection, and it also provides a more efficient algorithm for detecting blade icing in wind turbines. 

Moreover, ResNet is one of  the best-trained approaches, with an accuracy of  91.38%. This further 
proves that the deep CNN features extraction is the main strength of  this structure. GTAN and 
TAPNet show a comparative gain in Recall due to the fact that they are tailored for temporal attention, 
but still fail to reach the performance level of  CNN-BiGRU. 
 

5. Conclusions 
Icing of  wind turbine blades affects the stable operation and power generation efficiency of  wind 

farms, and the establishment of  an efficient prediction model is crucial to ensure the safety of  wind 
turbines and improve power generation efficiency. Considering the actual demands of  enterprises, we 
deal with the deep learning architecture performance on the confusing task and are also concerned with 
the comparison of  CNN structure with training rounds, as well as the optimization strategy on model 
performance. Results indicate that the 2-layer CNN structure yields the best results on feature 
extraction and computation, while the number of  training rounds to be set to 50 yields the best 
outcomes in terms of  both accuracy and generalization capability. Under this situation, the model does 
not suffer the problem of  either under-training or over-fitting. 

To improve the model performance, this study applies cosine annealing learning rates to schedule 
the training process and cross-entropy loss function for the category imbalance data rebalancing. The 
performance of  the models on the experimental data shows that CNN_2Layer-BiGRU outperforms 
traditional RNN, CNN, and Attention Mechanism models with a best recording of  96.55% and 96.51% 
for model accuracy and F1-score levels. These results indicate that CNN and BiGRU are capable enough 
in spatial feature extraction and to capture time series variations for icing prediction results 
enhancement. 

All in all, the CNN-BiGRU model integrated with the refined parameter tuning strategy produced 
the best results in ice prediction on SCADA data, which is not only considering the model efficiency but 
also the predictive ability and the algorithm stability. 

The results provide an efficient and stable intelligent diagnosis scheme for wind turbine blade icing 
prediction, which helps to improve the safety and operational efficiency of  wind farms. 
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