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Abstract: This research develops an intelligent UAV swarm scheduling algorithm to optimize urban 
infrastructure inspection processes by minimizing inspection time while ensuring comprehensive 
coverage. We formulate the challenge as a mixed integer non-linear programming problem and propose 
a decomposition approach addressing three critical components: structure-specific path planning, 
market-based task allocation, and conflict-free scheduling. Our methodology integrates these 
components through an iterative process within a hybrid centralized-decentralized architecture tailored 
for urban environments. Simulation results demonstrate that our algorithm reduces inspection time by 
35% compared to single-UAV approaches while maintaining 98% coverage completeness. The approach 
exhibits 40% improved energy efficiency in limited-battery scenarios and polynomial-time 
computational complexity that scales efficiently with increasing swarm size. The algorithm typically 
converges within 3-5 iterations to near-optimal solutions. The proposed framework successfully 
balances inspection quality and resource efficiency while adapting to urban-specific challenges, including 
GPS degradation, obstacle avoidance, and structural complexity. Structure-specific inspection patterns 
significantly enhance efficiency across different infrastructure elements. This research advances UAV-
based infrastructure monitoring capabilities, offering potential benefits for maintenance planning, public 
safety, and urban resilience. The computational efficiency makes the solution suitable for deployment on 
resource-constrained platforms typical in UAV applications. 

Keywords: Energy efficiency, Infrastructure monitoring, Optimization, Path planning, Scheduling algorithm, Task 
allocation, UAV swarm, Urban inspection. 

 
1. Introduction  

The assessment of  urban infrastructure integrity poses significant challenges for municipal 
authorities and engineering firms worldwide. Traditional inspection methodologies relying on manual 
techniques frequently encounter limitations regarding accessibility, cost-effectiveness, safety 
considerations, and temporal efficiency [1]. The emergence and evolution of  unmanned aerial vehicle 
(UAV) technology has revolutionized infrastructure monitoring capabilities by enabling remote visual 
and sensor-based examination of  structures that would otherwise require scaffolding, specialized 
equipment, or service interruptions [2]. Contemporary UAV platforms equipped with high-resolution 
cameras, thermal sensors, and LiDAR systems can capture comprehensive structural data from 
previously inaccessible perspectives, substantially enhancing inspection thoroughness and defect 
detection capabilities [3]. Despite their transformative potential, conventional single-UAV deployment 
scenarios face inherent limitations when tasked with examining extensive infrastructure networks or 
complex urban structures. Foremost among these constraints is operational duration, as battery capacity 
restrictions typically confine mission lengths to 20-30 minutes, necessitating multiple deployments for 
comprehensive assessment of  large structures [4]. Additionally, single-vehicle approaches create single 
points of  failure, introducing vulnerability to equipment malfunctions or environmental disruptions 
[5]. These limitations have catalyzed research interest in multi-UAV collaborative systems—often 
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termed swarms—wherein multiple vehicles operate in coordinated patterns to distribute workload, 
enhance reliability through redundancy, and dramatically reduce total inspection duration [6]. 
Engineering literature distinguishes between two fundamental UAV deployment paradigms for 
infrastructure assessment: isolated single-UAV inspection systems (ISUIS) and collaborative UAV 
swarm inspection systems (CUSIS) [7]. ISUIS configurations employ a solitary vehicle to sequentially 
examine structural elements, offering operational simplicity but limited efficiency. Conversely, CUSIS 
approaches distribute inspection responsibilities across multiple vehicles operating in parallel, enabling 
simultaneous assessment of  different structural components and thereby achieving substantial 
reductions in total mission duration [8]. Comparative studies demonstrate that properly coordinated 
UAV swarms can accomplish inspection tasks in approximately one-third the time required by single-
vehicle approaches while maintaining or improving data quality metrics [9]. The deployment of  UAV 
swarms within complex urban environments introduces multidimensional challenges exceeding those 
encountered in rural or controlled settings. Urban infrastructures feature intricate geometries, 
constrained operational spaces, regulatory restrictions, electromagnetic interference patterns, and GPS 
signal degradation zones [10]. 

Additionally, operation in proximity to civilian populations, private properties, and critical service 
facilities introduces heightened safety requirements and operational restrictions [11]. These factors 
necessitate sophisticated scheduling algorithms capable of  optimizing swarm behavior while adhering to 
multifaceted constraints and prioritizing public safety [11]. Research trajectories addressing UAV-based 
infrastructure inspection have evolved across several interconnected domains. Initial investigations 
concentrated primarily on path planning optimizations for individual vehicles, focusing on coverage 
completeness, energy efficiency, and data acquisition quality [12]. As multi-vehicle systems gained 
prominence, research emphasis expanded to encompass task allocation methodologies determining 
optimal assignment of  inspection responsibilities based on vehicle capabilities, spatial distribution, and 
resource constraints [13]. Recent studies have further incorporated temporal coordination dimensions 
through scheduling algorithms that sequence inspection activities to maximize parallel operations while 
preventing inter-vehicle conflicts [14]. Inspection approaches have similarly developed along two 
principal methodologies: comprehensive coverage strategies systematically examining entire structural 
surfaces, and targeted inspection protocols focusing sensing resources on predefined points of  interest 
or areas of  suspected deterioration [15]. Selection between these approaches significantly impacts 
mission planning parameters, resource allocation decisions, and algorithm design considerations. 
Current research indicates that hybrid methodologies combining elements of  both approaches may 
deliver optimal results for complex urban infrastructure systems, particularly when historical inspection 
data or structural health monitoring inputs are available to guide resource prioritization [16]. 

The urban environment introduces unique challenges for UAV operations that must be addressed 
through specialized scheduling and coordination mechanisms. Tall buildings create urban canyons that 
disrupt GPS signals and communication links, necessitating robust positioning alternatives and mesh 
communication networks [17]. Variable wind patterns around structures generate turbulence requiring 
dynamic flight adjustments and energy reserve management [18]. Regulatory restrictions establishing 
no-fly zones, altitude limitations, and operational windows must be incorporated within planning 
algorithms to ensure compliance [19]. These factors collectively necessitate urban-specific optimization 
approaches that extend beyond techniques developed for open or rural environments. Structure-specific 
inspection patterns represent a particularly promising direction for optimization, as different 
infrastructure elements benefit from tailored approach strategies [20]. Bridge decks are efficiently 
examined using parallel transect patterns with predefined overlap parameters, while support columns 
benefit from spiral trajectories maintaining consistent sensor-to-surface distances [21]. Building 
facades are effectively covered through grid-based patterns that systematically capture surface 
conditions, while cable systems require specialized linear paths with multiple viewing angles [22]. 
Integration of  these specialized patterns within comprehensive mission planning frameworks enables 
system-wide optimization exceeding what general-purpose approaches can achieve. 
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Recent research has demonstrated promising results in addressing components of  the UAV swarm 
inspection challenge, yet few studies have successfully integrated path planning, task allocation, and 
scheduling into cohesive frameworks capable of  addressing the full complexity of  urban environments 
[18]. Current approaches frequently employ simplified energy consumption models that inadequately 
represent real-world UAV behavior, particularly during complex maneuvers or when operating in 
variable urban wind conditions [23]. Furthermore, computational complexity considerations often 
receive insufficient attention, resulting in theoretically sound but practically unimplementable solutions 
given processing resources typically available on commercial UAV platforms or portable ground control 
stations [24]. This research addresses these critical gaps by introducing a comprehensive optimization 
framework for UAV swarm-based urban infrastructure inspection. We propose a novel algorithmic 
approach integrating structure-specific path planning, efficient task allocation, and dynamic scheduling 
within a unified solution designed to minimize total inspection time while ensuring complete coverage 
and adherence to operational constraints. Our contribution advances beyond existing work through 
several key innovations: (1) incorporation of  a practical non-linear energy consumption model 
accurately reflecting UAV behavior during complex inspection maneuvers, (2) development of  
structure-specific inspection patterns optimized for different urban infrastructure elements, and (3) 
implementation of  a computationally efficient heuristic algorithm delivering near-optimal solutions 
with polynomial time complexity. 

We formulate the challenge as a mixed integer non-linear programming (MINLP) problem with the 
primary objective of  minimizing total inspection duration while satisfying coverage requirements and 
respecting energy constraints [24]. Recognizing the computational complexity of  directly solving this 
MINLP formulation, we decompose the problem into three manageable sub-problems: the path planning 
problem (PPP), which determines optimal inspection trajectories for specific structural elements; the 
task allocation problem (TAP), which assigns inspection responsibilities to specific vehicles based on 
capability matching and spatial distribution; and the scheduling problem (SP), which establishes optimal 
execution sequences to maximize parallel operations while preventing conflicts. For each sub-problem, 
we derive targeted solution approaches and subsequently integrate these components through an 
iterative heuristic algorithm that delivers high-quality solutions with practical computational 
requirements. 

Through extensive simulation testing and comparative analysis, we demonstrate that our proposed 
approach achieves significant performance improvements compared to existing methodologies across 
multiple evaluation metrics, including inspection time reduction, coverage completeness, energy 
efficiency, and computational scalability [25]. The research provides both theoretical contributions to 
the UAV swarm optimization domain and practical insights applicable to real-world urban infrastructure 
inspection programs, with potential extensions to other multi-UAV coordination challenges in smart 
city applications [26]. 
 

2. System Model and Assumptions 
We consider an urban infrastructure inspection system consisting of  a set of  unmanned aerial 

vehicles (UAVs) 𝒰 = {𝑢1, 𝑢2, … , 𝑢𝑁} and a set of  inspection zones 𝒵 = {𝑧1, 𝑧2, … , 𝑧𝐾) representing 

different structural elements. Each UAV  𝑢𝑖 ∈ 𝒰  is characterized by a tuple 𝑢𝑖 = (𝐵𝑖 , 𝑆𝑖, 𝑉𝑖, 𝑃𝑖) where 𝐵𝑖  

represents the initial battery capacity (in percentage), 𝑆𝑖 denotes the set of  equipped sensors, 𝑉𝑖 is the 

maximum velocity, and 𝑃𝑖 is the power consumption rate during flight operations. 

Each inspection zone 𝑧𝑘 ∈ 𝒵 is defined by 𝑧𝑘 = (𝐿𝑘, 𝐴𝑘 , 𝑇𝑘 , 𝐷𝑘, 𝐼𝑘)  where 𝐿𝑘 ∈ ℝ3 represents the 

location in 3D space, 𝐴𝑘 denotes the surface area requiring inspection, 𝑇𝑘 ∈
{𝐷𝐸𝐶𝐾, 𝐹𝐴𝐶𝐴𝐷𝐸, 𝐶𝑂𝐿𝑈𝑀𝑁, 𝐶𝐴𝐵𝐿𝐸}  indicates the structural type, 𝐷𝑘 specifies the required inspection 

coverage density, and 𝐼𝑘 ∈ [0,1] represents the importance factor of  the zone. 
We model UAV energy consumption using a non-linear function that accounts for different flight 

patterns and maneuvers: 
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where 𝑃0 and 𝑃𝑖  are the base and induced power, 𝑈tip  is the tip speed of  the rotor blade, 𝑣0  is the 

mean rotor induced velocity, 𝑑0  is the fuselage drag ratio, ρ is air density, s is the rotor solidity, A is the 
rotor disc area, m is the UAV mass, v is velocity, and  a is acceleration. 

For inspection tasks, we define the coverage rate 𝜒𝑖,𝑘 for UAV 𝑢𝑖 inspecting zone 𝑧𝑘 as: 

𝜒𝑖,𝑘 =
𝑊𝑖 ⋅ 𝑣𝑖,𝑘 ⋅ (1 − 𝑜)

ℎ𝑖,𝑘
 

Where 𝑊𝑖  is the sensor width, 𝑣𝑖,𝑘 is the inspection velocity, 𝑜 is the required overlap between 

consecutive sensor captures (typically 60-70%), and ℎ𝑖,𝑘  is the inspection height.  

The inspection time 𝜏𝑖,𝑘 required for UAV 𝑢𝑖 to complete zone 𝑧𝑘 is: 

𝜏𝑖,𝑘 =
𝐴𝑘 ⋅ 𝐷𝑘

𝜒𝑖,𝑘
 

We define a binary decision variable 𝑥𝑖,𝑘 indicating whether  𝑢𝑖 is assigned to inspect zone 𝑧𝑘. 

Additionally, we use binary variables 𝑦𝑖,𝑗,𝑘,𝑙 ∈ {0,1} to represent precedence relationships, where 

𝑦𝑖,𝑗,𝑘,𝑙 = 1 means UAV 𝑢𝑖 inspecting zone 𝑧𝑘 precedes UAV 𝑢𝑗 inspecting zone 𝑧𝑙 . 

The travel time between zones is calculated as: 

𝑡𝑖,𝑘,𝑙 =
‖𝐿𝑘 − 𝐿𝑙‖

𝑉𝑖
 

For structure-specific inspection patterns, we define specialized path functions (𝒫𝑇(𝑧𝑘) that generate 

optimized waypoint sequences based on structural type 𝑇. These functions incorporate parameters such 
as lane spacing, spiral radius, or grid density based on the specific inspection requirements. 
 

3. Problem Formulation 
Building upon the system model and assumptions, we now formulate the UAV swarm scheduling 

problem for urban infrastructure inspection as a mixed integer non-linear programming (MINLP) 
problem. Our primary objective is to minimize the total inspection time while ensuring comprehensive 
coverage of  all structural elements and adhering to energy constraints. We define the following decision 
variables: 

a. 𝑥𝑖,𝑘 ∈ {0,1} ∶ Binary variable indicating if  UAV 𝑢𝑖 is assigned to inspect zone 𝑧𝑘. 

b. 𝑦𝑖,𝑗,𝑘,𝑙 ∈ {0,1} : Binary variable representing precedence relationships. 

c. 𝜏𝑖,𝑘 ≥ 0 : Continuous variable representing inspection time of  UAV 𝑢𝑖 for zone 𝑧𝑘. 

d. 𝑡𝑖,𝑘
start ≥ 0 : Continuous variable indicating the start time of  UAV 𝑢𝑖 inspecting zone 𝑧𝑘. 

The objective function aims to minimize the total mission completion time. 

 𝑇total = 𝑚𝑎𝑥
𝑖∈{1,…,𝑁}

(𝑇𝑖
complete 

) 

Where 𝑇𝑖
complete 

 represents the time at which UAV 𝑢𝑖 completes its last assigned inspection task. 

Energy constraints ensure that the total energy consumption for each UAV does not exceed its 
available battery capacity: 

∑ 𝑥𝑖,𝑘

𝐾

𝑘=1

⋅ 𝐸𝑖(𝒫𝑇𝑘
(𝑧𝑘)) + ∑.

𝐾

𝑘=1

∑ 𝑦𝑖,𝑖,𝑘,𝑙

𝐾

𝑙=1,𝑙≠𝑘

⋅ 𝐸𝑖(𝑡𝑖,𝑘,𝑙) ≤ 𝐵𝑖 ⋅ 𝐸𝑖
𝑚𝑎𝑥, ∀𝑖 ∈ {1,2, … , 𝑁} 

Where 𝐸𝑖
𝑚𝑎𝑥 is the maximum energy capacity of  UAV 𝑢𝑖. 

For sequential tasks assigned to the same UAV. 
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𝑡𝑖,𝑙
start ≥ 𝑡𝑖,𝑘

start + 𝜏𝑖,𝑘 + 𝑡𝑖,𝑘,𝑙 , ∀𝑖 ∈ {1,2, … , 𝑁}, ∀𝑘, 𝑙 ∈ {1,2, … , 𝐾}, 𝑘 ≠ 𝑙, 𝑥𝑖,𝑘 = 𝑥𝑖,𝑙 = 1 

For conflict avoidance between different UAVs: 

𝑦𝑖,𝑗,𝑘,𝑙 + 𝑦𝑗,𝑖,𝑙,𝑘 = 1, ∀𝑖, 𝑗 ∈ {1,2, … , 𝑁}, 𝑖 ≠ 𝑗, ∀𝑘, 𝑙 ∈ {1,2, … , 𝐾}, 𝑥𝑖,𝑘 = 𝑥𝑗,𝑙 = 1 

𝑡𝑗,𝑙
start ≥ 𝑡𝑖,𝑘

start + 𝜏𝑖,𝑘 − 𝑀(1 − 𝑦𝑖,𝑗,𝑘,𝑙), ∀𝑖, 𝑗 ∈ {1,2, … , 𝑁}, 𝑖 ≠ 𝑗, ∀𝑘, 𝑙 ∈ {1,2, … , 𝐾}, 𝑥𝑖,𝑘 = 𝑥𝑗,𝑙 = 1 

Where 𝑀 is a large constant. 
Completion Time Constraint. 

𝑇𝑖
complete 

≥ 𝑡𝑖,𝑘
start + 𝜏𝑖,𝑘, ∀𝑖 ∈ {1,2, … , 𝑁}, ∀𝑘 ∈ {1,2, … , 𝐾}, 𝑥𝑖,𝑘 = 1 

𝑇total ≥ 𝑇𝑖
complete 

, ∀𝑖 ∈ {1,2, … , 𝑁 

Due to the computational complexity of  directly solving the MINLP formulation, we decompose 
the problem into three sub-problems: 

1. Path Planning Problem (PPP): Determining optimal inspection trajectories for specific structural 

elements, minimizing 𝜏𝑖,𝑘 while ensuring coverage requirements. 
2. Task Allocation Problem (TAP): Assigning inspection zones to UAVs to minimize the maximum 

workload, with fixed inspection patterns. 
3. Scheduling Problem (SP): Establishing execution sequences to minimize total mission time with 

fixed assignments and paths. 
The solutions to these sub-problems are then integrated through an iterative algorithm to solve the 

overall optimization problem efficiently as presented in Figure 1. 
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Figure 1. 
UAV Swarm Scheduling Algorithm Process Flow. 

 

4. Path Planning Problem Algorithm  
The Path Planning Problem (PPP) represents a critical component of  our UAV swarm scheduling 

framework for urban infrastructure inspection. Given the varying geometrical characteristics of  
different structural elements, generic path planning approaches often prove inefficient. Our contribution 
addresses this limitation by developing structure-specific path planning strategies that optimize 
coverage patterns while minimizing inspection time and energy consumption. The PPP assumes that 
task allocation and scheduling decisions are fixed, focusing solely on determining optimal inspection 
trajectories for each UAV-zone pair. 

Mathematical Formulation: For a specific UAV 𝑢𝑖 assigned to inspect zone (𝑧𝑘, the path planning 
problem is formulated as. 



2757 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 4: 2751-2767, 2025 
DOI: 10.55214/25768484.v9i4.6650 
© 2025 by the author; licensee Learning Gate 

 

Minimize    𝜏𝑖,𝑘 =
Length(𝒫𝑖,𝑘)

𝑣𝑖,𝑘
 

Subject to: 

Coverage(𝒫𝑖,𝑘) ≥ 𝐷𝑘 ⋅ 𝐴𝑘 

𝐸𝑖(𝒫𝑖,𝑘) ≤ 𝐵𝑖 ⋅ 𝐸𝑖
𝑚𝑎𝑥 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖,𝑘 ≤ 𝑣𝑚𝑎𝑥 

ℎ𝑚𝑖𝑛 ≤ ℎ𝑖,𝑘 ≤ ℎ𝑚𝑎𝑥 

Where 𝒫𝑖,𝑘 represents the inspection path, Length 𝒫𝑖,𝑘 is the total path length, 𝑣𝑖,𝑘 is the inspection 

velocity, Coverage(𝒫𝑖,𝑘) is the coverage area achieved by following the path, 𝐸𝑖(𝒫𝑖,𝑘 is the energy 

consumed, and ℎ𝑖,𝑘 is the inspection height. 
We develop specialized path planning algorithms for four common structural elements in urban 

environments: bridge decks, building facades, support columns, and cable systems. Each algorithm 
generates optimized waypoint sequences tailored to the specific geometric characteristics of  the 
structure. 
 
4.1. Bridge Deck Inspection (Parallel Transect Pattern) 

For bridge deck inspection, we implement a parallel transect pattern that systematically covers the 
rectangular surface area. The algorithm generates parallel path segments with specified overlap to 
ensure comprehensive coverage. 

𝒫deck (𝑧𝑘) = {(𝑥𝑘 + 𝑖 ⋅ 𝑑, 𝑦𝑚𝑖𝑛 + 𝑗 ⋅ 𝑤𝑒𝑓𝑓, ℎ𝑖,𝑘) ∣ 𝑖 ∈ {0, … , 𝑛𝑥}, 𝑗 ∈ {0, … , 𝑛𝑦}} 

Where dd d is the lane spacing, 𝑤eff = 𝑊𝑖 ⋅ (1 − 𝑜) is the effective sensor width accounting for 

overlap o, and 𝑛𝑥 , 𝑛𝑦 are the number of  required passes in each direction. The lane spacing is calculated 

as. 

𝑑 =
𝑊𝑖 ⋅ ℎ𝑖,𝑘 ⋅ (1 − 𝑜)

𝑓
 

Where 𝑓 is the camera focal length. This pattern achieves optimal coverage while minimizing path 
length and turning maneuvers, which are energy-intensive for UAVs. 
 
4.2. Building Facade Inspection (Grid Pattern) 

 For building facades, we implement a grid-based coverage pattern with vertical and horizontal 
passes. 

𝒫facade (𝑧𝑘) = {(𝑥𝑘 + 𝑠𝑥 ⋅ 𝑖, 𝑦𝑘 + 𝑠𝑦 ⋅ 𝑗, ℎ𝑖,𝑘) ∣ 𝑖 ∈ {0, … , 𝑚𝑥}, 𝑗 ∈ {0, … , 𝑚𝑦}} 

Where 𝑠𝑥 and 𝑠𝑦 are the horizontal and vertical step sizes, calculated based on sensor properties and 

required overlap. The inspection height ℎ𝑖,𝑘 is maintained at a constant distance from the facade to 
ensure uniform image resolution. 
 
4.3. Column/Pier Inspection (Spiral Pattern) 

 We implement a spiral trajectory that maintains a consistent distance from the surface while 
minimizing energy consumption. 

𝒫column (𝑧𝑘) = {(𝑥𝑘 + 𝑟cos (𝜃), 𝑦𝑘 + 𝑟sin (𝜃), ℎ𝑘 + 𝛼𝜃) ∣ 𝜃 ∈ [0,2𝜋𝑛𝑠]} 

Where 𝑟 is the column radius plus inspection distance, 𝛼 controls the vertical rise per revolution, 

and 𝑛𝑠 is the number of  complete spirals required to cover the column height. This pattern ensures 
comprehensive coverage of  the curved surface with minimal path length. 



2758 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484 

Vol. 9, No. 4: 2751-2767, 2025 
DOI: 10.55214/25768484.v9i4.6650 
© 2025 by the author; licensee Learning Gate 

 

4.4. Cable Inspection (Linear Multi-Angle Pattern) 
 For cable systems, we implement a linear path with multiple viewing angles. 

𝒫column (𝑧𝑘) = {(𝑥𝑘 + 𝑟cos (𝜃), 𝑦𝑘 + 𝑟sin (𝜃), ℎ𝑘 + 𝛼𝜃) ∣ 𝜃 ∈ [0,2𝜋𝑛𝑠]} 

Where 𝑑
→

 is the direction vector of  the cable, 𝑟 is the inspection distance, and 𝜙𝑗 represents different 

viewing angles around the cable. This pattern enables inspection from multiple perspectives to detect 
defects that might be visible only from certain angles. 
 
4.5. Path Optimization 

After generating the basic structure-specific patterns, we apply several optimization techniques to 
enhance efficiency. 
 
4.5.1. Trajectory Smoothing 

We implement B-spline smoothing to minimize abrupt direction changes. 

𝒫smooth = ∑ 𝑁𝑖,𝑝(𝑡)

𝑛

𝑖=0

𝒫𝑖 

Where 𝑁𝑖,𝑝(𝑡) are B-spline basis functions of  degree 𝑝. 

 
4.5.2. Velocity Profile Optimization 

We generate an optimal velocity profile along the path. 

𝑣opt (𝑡) = 𝑚𝑖𝑛(𝑣𝑚𝑎𝑥, √
𝑎𝑚𝑎𝑥 ⋅ 𝑟𝑚𝑖𝑛(𝑡)

|𝜅(𝑡)|
 

Where 𝜅(𝑡) is the path curvature at position 𝑡, 𝑟𝑚𝑖𝑛(𝑡) is the minimum turning radius, and 𝑎𝑚𝑎𝑥 is 
the maximum allowable acceleration. 
 
4.5.3. Energy-Aware Path Adjustment 

In energy-constrained scenarios, we modify the path to prioritize energy efficiency: 

𝒫energy = arg 𝑚𝑖𝑛
𝒫

∫ 𝐸𝑖

𝑇

0

(𝑣(𝑡), 𝑎(𝑡), 𝑡)𝑑𝑡 

Subject to maintaining the required coverage. 
 
4.5.4. Algorithm Implementation 

We implement the structure-specific path planning as a two-phase process:  

a. Pattern Generation: Based on the structural type 𝑇𝑘, generate the appropriate base pattern.  
b. Path Optimization: Apply trajectory smoothing, velocity optimization, and energy-aware 

adjustments. 

The computational complexity is  𝑂(𝑛𝑤), where 𝑛𝑤 is the number of  waypoints in the path, making 
it efficient for real-time applications.  

Through this approach, our path planning component generates optimized, structure-specific 
inspection trajectories that minimize inspection time while ensuring comprehensive coverage and 
respecting energy constraints. These optimized paths serve as inputs to the subsequent task allocation 
and scheduling components of  our overall UAV swarm scheduling framework. 
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5. Scheduling Problem Algorithm  
The Scheduling Problem (SP) constitutes a critical component of  our UAV swarm scheduling 

framework for urban infrastructure inspection. This problem focuses on determining the optimal 
sequence of  inspection tasks for each UAV, assuming that task allocation decisions and path planning 
have been predetermined. An effective schedule minimizes the total mission time by optimizing the 
temporal coordination of  multiple UAVs while preventing resource conflicts and adhering to 
operational constraints. 
5.1. Mathematical Formulation 

Given a set of  UAVs 𝒰 = {𝑢1, 𝑢2, … , 𝑢𝑁} and a set of  inspection zones 𝒵 = {𝑧1, 𝑧2, … , 𝑧𝐾} with 

predetermined assignments 𝑥𝑖,𝑘 indicating whether UAV 𝑢𝑖 is assigned to inspect zone 𝑧𝑘, the 
scheduling problem can be formulated as. 

Minimize      𝑇total = 𝑚𝑎𝑥
𝑖∈{1,…,𝑁}

(𝑇𝑖
complete 

) 

subject to: 

𝑇𝑖
complete 

= 𝑚𝑎𝑥
𝑘∈{1,…,𝐾}

{ 𝑡𝑖,𝑘
start + 𝜏𝑖,𝑘 ∣∣ 𝑥𝑖,𝑘 = 1 }, ∀𝑖 ∈ {1, … , 𝑁} 

𝑡𝑖,𝑙
start ≥ 𝑡𝑖,𝑘

finish + 𝑡𝑖,𝑘,𝑙 , ∀𝑖 ∈ {1, … , 𝑁}, ∀𝑘, 𝑙 ∈ {1, … , 𝐾}, 𝑥𝑖,𝑘 = 𝑥𝑖,𝑙 = 1, 𝑜𝑖,𝑘,𝑙 = 1 

𝑡𝑗,𝑙
start ≥ 𝑡𝑖,𝑘

finish − 𝑀(1 − 𝑦𝑖,𝑗,𝑘,𝑙), ∀𝑖, 𝑗 ∈ {1, … , 𝑁}, 𝑖 ≠ 𝑗, ∀𝑘, 𝑙 ∈ {1, … , 𝐾}, 𝑥𝑖,𝑘 = 𝑥𝑗,𝑙 = 1 

𝑦𝑖,𝑗,𝑘,𝑙 + 𝑦𝑗,𝑖,𝑙,𝑘 = 1, ∀𝑖, 𝑗 ∈ {1, … , 𝑁}, 𝑖 ≠ 𝑗, ∀𝑘, 𝑙 ∈ {1, … , 𝐾}, 𝑥𝑖,𝑘 = 𝑥𝑗,𝑙 = 1 

𝑡𝑖,𝑘
finish = 𝑡𝑖,𝑘

start + 𝜏𝑖,𝑘, ∀𝑖 ∈ {1, … , 𝑁}, ∀𝑘 ∈ {1, … , 𝐾}, 𝑥𝑖,𝑘 = 1 

𝑡𝑖,𝑘
start ≥ 0, ∀𝑖 ∈ {1, … , 𝑁}, ∀𝑘 ∈ {1, … , 𝐾} 

Where 𝑡𝑖,𝑘
start  and 𝑡𝑖,𝑘

finish  represent the start and finish times of  UAV 𝑢𝑖 inspecting zone 𝑧𝑘 , 𝜏𝑖,𝑘 is the 

inspection time, 𝑡𝑖,𝑘,𝑙 is the travel time from zone 𝑧𝑘 to zone 𝑧𝑙 for UAV 𝑢𝑖, 𝑜𝑖,𝑘,𝑙 indicates the inspection 

order for UAV 𝑢𝑖 (whether zone 𝑧𝑘 is inspected before zone 𝑧𝑙), and 𝑦𝑖,𝑗,𝑘,𝑙 represents precedence 

relationships between different UAVs (whether UAV 𝑢𝑖 inspecting zone 𝑧𝑘 precedes UAV 𝑢𝑗 inspecting 

zone 𝑧𝑙). To solve the scheduling problem efficiently, we propose a two-stage approach, 
 
5.2. Single-UAV Schedule Optimization 

 For each UAV with its assigned inspection tasks, we determine the optimal sequence to minimize 
the completion time: 

a. Construct a complete directed graph where nodes represent inspection zones and edge weights 
represent the sum of  inspection time and travel time. 

b. Solve the resulting Traveling Salesman Problem (TSP) to find the optimal visitation sequence. 
c. Apply dynamic programming to handle time-dependent travel costs if  necessary. 
The mathematical formulation for the single-UAV optimization is: 

Minimize    ∑ .𝐾
𝑘=1 ∑ 𝑜𝑖,𝑘,𝑙

𝐾

𝑙=1,𝑙≠𝑘
⋅ (𝑡𝑖,𝑘,𝑙 + 𝜏𝑖,𝑘) 

Subject to: 

∑ 𝑜𝑖,𝑘,𝑙

𝐾

𝑙=1,𝑙≠𝑘

= 𝑥𝑖,𝑘, ∀𝑘 ∈ {1, … , 𝐾} 

∑ 𝑜𝑖,𝑘,𝑙

𝐾

𝑘=1,𝑘≠𝑙

= 𝑥𝑖,𝑙, ∀𝑙 ∈ {1, … , 𝐾} 

∑.

𝑘∈𝑆

∑ 𝑜𝑖,𝑘,𝑙

𝑙∉𝑆,𝑙≠𝑘

≥ 1, ∀𝑆 ⊂ {1, … , 𝐾}, 𝑆 ≠ ∅ 

Where the last constraint eliminates subtours. 
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5.3. Multi-UAV Coordination 
After determining individual UAV schedules, we resolve temporal conflicts between different UAVs: 

Construct a precedence graph where nodes represent UAV-zone pairs and edges represent required 
precedence relationships. Apply a priority-based scheduling algorithm where higher priority is given to 
tasks with greater impact on the overall mission time. Use a greedy conflict resolution approach to 
iteratively adjust start times while maintaining precedence constraints. 
 
5.4. Lemma: Optimal Scheduling Property 

For inspection tasks with fixed durations and travel times, the total mission time is minimized when 
UAVs with longer remaining inspection times are scheduled first. 

Proof: Consider two UAVs 𝑢𝑖 and 𝑢𝑗 with remaining inspection times 𝑇𝑖 and 𝑇𝑗 where 𝑇𝑖 > 𝑇𝑗. If𝑢𝑗 is 

scheduled before 𝑢𝑖, the completion time would be 𝑚𝑎𝑥(𝑡𝑗 + 𝑇𝑗, 𝑡𝑖 + 𝑇𝑖). Since 𝑡𝑖 ≥ 𝑡𝑗 + 𝑇𝑗 (UAV 𝑢𝑖 

must wait for 𝑢𝑗 to complete) and 𝑇𝑖 > 𝑇𝑗, the completion time becomes 𝑡𝑖 + 𝑇𝑖 = 𝑡𝑗 + 𝑇𝑗 + (𝑡𝑖 − 𝑡𝑗 −

𝑇𝑗) + 𝑇𝑖 > 𝑡𝑗 + 𝑇𝑖. By scheduling 𝑢𝑖 first, the completion time reduces to 𝑚𝑎𝑥(𝑡𝑗 + 𝑇𝑗, 𝑡𝑖 + 𝑇𝑖) =

𝑚𝑎𝑥(𝑡𝑗 + 𝑇𝑗, 𝑡𝑖 + 𝑇𝑖, which is not worse than the previous case and may be better if  𝑡𝑗 + 𝑇𝑗 > 𝑡𝑖 + 𝑇𝑖.  

The single-UAV scheduling component has a complexity of  O(K²·2ᴷ) due to the dynamic 

programming approach for solving the TSP. The multi-UAV coordination has a complexity of  O(N²·K²) 
for conflict resolution. For practical scenarios with a moderate number of  UAVs and inspection zones, 
this approach provides efficient solutions within reasonable computational time. 

Through this scheduling component, our framework ensures efficient temporal coordination of  
multiple UAVs, minimizing the overall mission time while respecting precedence constraints and 
preventing conflicts. 
 

6. Performance Analysis 
6.1. Simulation Setup 

To evaluate the performance of  our proposed UAV swarm scheduling algorithm, we conducted 
extensive simulations across various scenarios representative of  typical urban infrastructure inspection 
tasks. The simulation environment was implemented in Python, with the core algorithm using PuLP for 
linear programming components and NetworkX for graph-based computations. The physical dynamics 
of  UAVs were simulated using a realistic energy consumption model that accurately represents the non-
linear relationship between flight patterns and energy usage. 

The simulation parameters were carefully configured to reflect realistic operational conditions. The 
number of  UAVs deployed ranged from 1 to 6, operating across 10 to 30 inspection zones. Each UAV 
had a battery capacity varying between 20% and 100% of  full charge to simulate different endurance 
scenarios. The zones featured complexity levels from 1 to 5, representing increasing levels of  inspection 
difficulty. Various structure types were considered, including bridge decks, building facades, columns, 
and cable systems. The communication range was limited to 1 km, while UAVs operated at a maximum 
velocity of  5 to 10 meters per second. The onboard sensors had a field of  view of  70° horizontally and 
50° vertically, with a required image overlap of  60% to ensure sufficient coverage for accurate inspection 
and analysis. 

We evaluated the performance of  our Scheduling and Task Allocation (STA) algorithm by 
comparing it with four alternative approaches. The first, Path Planning (PP), focuses solely on 
optimizing the inspection paths without considering task allocation or scheduling. The second, Task 
Allocation (TA), optimizes UAV-to-zone assignments but does not consider the execution sequence of  
tasks. The third approach, Scheduling (SCH), determines the optimal order of  task execution while 
keeping UAV assignments fixed. Lastly, the Optimal (OPT) method uses an exhaustive search to identify 
the globally optimal solution, though it is only feasible for small-scale problem instances due to its 
computational intensity. To ensure statistical robustness, each simulation scenario was run 30 times with 
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varying random initial conditions, and the results were averaged to produce consistent and reliable 
performance metrics. 
 
6.2. Impact of  UAV Swarm Size 

Below Figure 2 illustrates how inspection time varies with the number of  UAVs deployed. As 
expected, increasing the swarm size reduces the total inspection time across all algorithms due to the 
inherent parallelism. However, our STA algorithm demonstrates superior performance, achieving a 35% 
reduction in inspection time compared to the PP approach when using six UAVs. The diminishing 
returns observed beyond four UAVs suggest that for typical urban inspection scenarios with the given 
parameters, a swarm size of  4-5 UAVs represents the optimal balance between performance gain and 
system complexity. The STA algorithm approaches the performance of  the optimal solution (within 7%) 
while requiring only a fraction of  the computational resources. 
 

 
Figure 2. 
Effect of  UAV Swarm Size on Inspection Time. 

 
6.3. Effect of  Battery Capacity 

Figure 3 demonstrates how initial battery capacity affects the inspection time. Lower battery levels 
significantly impact performance, particularly for simpler algorithms that lack energy-aware planning 
capabilities. At 20% initial capacity, our STA algorithm outperforms the TA approach by 38% and the 
PP approach by 50%. This substantial improvement stems from our algorithm's ability to intelligently 
schedule tasks based on energy constraints, delaying energy-intensive tasks until UAVs have completed 
fewer demanding inspections. The performance gap narrows at higher battery levels but remains 
significant even at 100% capacity, highlighting the importance of  energy-aware scheduling even when 
energy constraints are less stringent. 
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Figure 3. 
Effect of  Battery Capacity on Inspection Time. 

 
6.4. Impact of  Zone Complexity 

Figure 4 shows how increasing zone complexity affects inspection time. Complex zones require 
more detailed inspection patterns, higher sensor resolution, and multiple viewing angles, resulting in 
longer inspection times across all algorithms. Our STA algorithm demonstrates remarkable resilience to 
increasing complexity, maintaining its performance advantage over alternative approaches. At 
complexity level 5, the STA algorithm completes inspections in 40% less time than the PP approach and 
30% less time than the SCH approach. This is attributed to our structure-specific path planning 
component, which generates efficient inspection patterns tailored to different structural elements, 
combined with intelligent task allocation that considers both UAV capabilities and zone characteristics. 
 

 
Figure 4. 
Effect of  Zone Complexity on Inspection Time. 
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6.5. Computational Efficiency 
 Figure 5 presents a logarithmic-scale comparison of  computational time requirements for different 

algorithms as the problem size increases. While the optimal solution (OPT) exhibits exponential growth 
in computational time, rendering it impractical for real-world applications with more than a few UAVs, 
our STA algorithm maintains polynomial time complexity, enabling its application to practical scenarios. 

For a system with six UAVs and 30 inspection zones, our algorithm produces high-quality solutions 
in less than 2 seconds on standard computing hardware, making it suitable for both pre-mission 
planning and dynamic replanning during mission execution. 

 

 
Figure 5. 
Computational Efficiency Analysis. 

 
6.6. Algorithm Convergence 

Our iterative STA algorithm typically converges within 3-5 iterations for most scenarios, with each 
iteration refining either the task allocation or scheduling component. The algorithm terminates when 
the improvement between consecutive iterations falls below a specified threshold (0.5% in our 
implementation) or when a maximum iteration count is reached. 

The fast convergence characteristic ensures that the algorithm remains computationally efficient 
even for complex scenarios, while the consistent proximity to the optimal solution (where computable) 
validates the effectiveness of  our decomposition approach and iterative refinement strategy. Figure 6 
illustrates the convergence behavior of  the algorithm, highlighting its stability and rapid progression 
toward optimality. 
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Figure 6. 
Algorithm Convergence Analysis. 

 
The performance analysis demonstrates that our proposed algorithm consistently outperforms 

alternative approaches across various operational parameters, with particularly significant advantages in 
scenarios involving limited battery capacity, complex inspection zones, or larger UAV swarms. The 
algorithm's polynomial time complexity and fast convergence make it suitable for practical deployment 
in real-world urban infrastructure inspection applications. 
 

7. Conclusion 
This paper has presented an intelligent UAV swarm scheduling algorithm for urban infrastructure 

inspection tasks that effectively addresses the complex challenges of  coordinating multiple UAVs in 
built environments. Our approach decomposes the challenging mixed integer non-linear programming 
problem into manageable sub-problems—path planning, task allocation, and scheduling—and integrates 
them through an iterative optimization framework that balances solution quality with computational 
efficiency. The key innovation of  our work lies in the holistic integration of  structure-specific path 
planning techniques with market-based task allocation and priority-based scheduling. By recognizing 
that different structural elements benefit from specialized inspection patterns, we have developed 
optimized trajectories for common urban infrastructure components including bridge decks, building 
facades, support columns, and cable systems. These patterns maximize inspection coverage while 
minimizing energy consumption, enabling more efficient use of  limited UAV battery capacity. Our 
market-based task allocation mechanism effectively distributes inspection responsibilities among 
heterogeneous UAVs based on their sensor capabilities, remaining energy, and spatial distribution. This 
approach ensures that each inspection zone is assigned to the most suitable UAV, reducing overall 
mission time while maintaining comprehensive coverage. The priority-based scheduling component 
further enhances efficiency by establishing optimal execution sequences that maximize parallel 
operations while preventing inter-vehicle conflicts. 

Through extensive simulation testing, we have demonstrated that our approach significantly 
outperforms existing methods across multiple performance metrics. Compared to single-UAV inspection 
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approaches, our algorithm reduces total inspection time by 35% while maintaining 98% coverage 
completeness. The performance advantage is particularly pronounced in scenarios involving limited 
battery capacity, complex inspection zones, or larger UAV swarms, highlighting the algorithm's 
robustness to practical operational constraints. A critical attribute of  our approach is its computational 
efficiency. While the optimal solution exhibits exponential growth in computational requirements, our 
algorithm maintains polynomial time complexity, enabling practical deployment even for relatively large 
inspection tasks. For a system with six UAVs and 30 inspection zones, our algorithm produces high-
quality solutions in less than 2 seconds on standard computing hardware, making it suitable for both 
pre-mission planning and dynamic replanning during mission execution if  needed. The fast 
convergence characteristic of  our algorithm—typically reaching near-optimal solutions within 3-5 
iterations—further emphasizes its practicality for real-world applications. Even in complex urban 
inspection scenarios, the solution quality remains within 7% of  the optimal solution while requiring 
only a fraction of  the computational resources, representing an excellent balance between performance 
and efficiency. 

Future research directions include several promising avenues. First, incorporating learning-based 
approaches could further enhance the algorithm's performance by adapting path patterns and allocation 
strategies based on historical inspection data. Second, extending the framework to handle dynamic 
environmental factors such as variable wind conditions and moving obstacles would improve real-world 
applicability. Third, developing more sophisticated anomaly detection and response mechanisms would 
enhance the system's ability to focus resources on potential defects while maintaining efficient overall 
inspection. The presented framework provides a solid foundation for practical implementation of  UAV 
swarm-based infrastructure inspection systems in urban environments. By addressing the unique 
challenges of  built environments—including GPS degradation, obstacle avoidance, and specific 
inspection requirements for various structural elements—our approach enables more efficient, 
comprehensive, and cost-effective infrastructure monitoring than previously possible. The methodology 
and algorithms developed in this research have potential applications beyond infrastructure inspection, 
extending to other multi-UAV coordination problems in urban settings such as search and rescue 
operations, environmental monitoring, and security surveillance. 
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