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Abstract: Collaborative filtering recommender systems primarily focus on short-term prediction 
accuracy but exhibit limitations concerning long-term user satisfaction and content diversity. In this 
paper, we reinterpret user-item interaction data as reinforcement learning with verifiable rewards and 
introduce the Group Relative Policy Optimization (GRPO) reinforcement learning algorithm, originally 
proposed in the large language model domain, to collaborative filtering model fine-tuning for the first 
time. GRPO directly updates policies without separate critic networks, balancing exploration and 
exploitation while optimizing long-term user engagement. In experiments conducted on Amazon 
review datasets covering baby products, video games, and industrial & scientific categories, the GRPO-
optimized model achieved up to 15.16% improvement in Recall@10 compared to baseline models. 
Additionally, we revealed that user embeddings from graph-based collaborative filtering architectures 
positively contribute to GRPO algorithm optimization, whereas positional embeddings from sequential 
collaborative filtering architectures impede optimization performance. These findings empirically 
validate the effectiveness of the GRPO algorithm as a robust approach for recommender system model 
optimization. 

Keywords: Collaborative filtering, GRPO, Recommender system, Reinforcement learning, RLVR. 

 
1. Introduction  

Recommender systems are core technologies used in various commercial platforms, such as e-
commerce and streaming services, to support decision-making by providing personalized content 
based on users' past behavior. Recommender systems are classified into collaborative filtering, 
content-based filtering, and hybrid methods that integrate the two. Collaborative filtering methods 
are rely on the theoretical assumption that users exhibiting similar behaviors share similar 
preferences. Collaborative filtering methods are further divided into sequential collaborative 
filtering methods and graph-based collaborative filtering methods, with the former learning users' 
temporal interaction relationships and the latter learning structural relationships between users 
and items. 

Representative sequential collaborative filtering methods include FPMC [1] which integrates 
Markov chains and matrix factorization to capture long-term and short-term preferences; RNN 
and LSTM-based session models; GRU4Rec [2] which addresses long-term dependency issues 
prior to the advent of the Transformer architecture; and SASRec [3] which introduced the self-
attention mechanism from the Transformer architecture. 

Meanwhile, graph-based collaborative filtering methods represent interactions between users 
and items as a bipartite graph structure and reinforce the sparsity of the bipartite graph through 
multi-layer propagation. For example, NGCF [4] learned local neighborhood information and 
global collaborative signals using a Graph Convolutional Network to capture higher-order 
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connectivity. LightGCN [5] improves efficiency and performance by removing the nonlinear 
activation of NGCF. 

However, when sequential collaborative filtering methods and graph-based collaborative 
filtering methods are used independently, only their respective advantages are utilized. Therefore, 
recent studies [6, 7] that integrate the two methods have attracted attention. In particular, the 
latest model GSAU [8] aligns and homogenizes sequential and graph-based modules in a single 
embedding space and combines their complementary characteristics to contribute to improved 
recommendation performance. As shown in Figure 1, the GSAU model achieved significant 
improvements in performance metrics compared to the traditional sequential collaborative filtering 
model SASRec and the graph-based collaborative filtering model LightGCN. 
 

 
Figure 1.  
Comparison of Collaborative Filtering Model Performance Using Amazon Industrial & Scientific and Video Games Data in 
2023. 

 
Along with research on integrating collaborative filtering models, research on recommender 

systems utilizing reinforcement learning [9, 10] is also continuing. This is because existing 
collaborative filtering-based research has focused only on one-time and immediate predictions, 
optimizing for short-term performance, and as a result, only recommending items from similar clusters, 
ultimately reducing user engagement in the long term. Reinforcement learning-based approaches 
redefine the problem as optimizing user interactions from a long-term perspective, maximizing the 
diversity of recommendations and user satisfaction through exploration and reinforcement. For 
example, Chen, et al. [11] successfully applied reinforcement learning agents to YouTube's 
recommender system, proving its practicality. However, to address policy instability caused by 
distribution variability in off-policy learning, subsequent research [12] introduced the actor-critic 
structure. 

In this paper, we propose a methodology for applying Deepseek's Group Relative Policy 
Optimization (GRPO) [13] which was recently proposed in the LLM field as a pure policy-based 
approach without a separate critic network, to recommender systems. We experimentally verified 
performance improvements by applying the GRPO algorithm to sequential collaborative filtering, 
graph-based collaborative filtering, and integrated sequential and graph-based collaborative filtering 
models. The main contributions of this paper are as follows: 

• We are the first to apply the Deepseek GRPO algorithm to a collaborative filtering-based 
recommender system, demonstrating a significant improvement in recommendation performance. 
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• We performed policy optimization for each embedding structure of collaborative filtering models 
and experimentally analyzed and verified the differences in performance. 

  

2. Related Work 
2.1. Collaborative Filtering Integration 

Researchers have attempted to integrate sequential and graph-based methods to effectively 
capture user’s short-term and long-term preferences. SR-GNN [6] learns sequential relationships 
between items within a session using a graph neural network and predicts the next item by 
combining global collaborative signals and session interests based on the last node embedding using 
attention. FGNN [14] improves recommendation accuracy by adding a Weighted Graph Attention 
Layer that reflects the directionality and interaction frequency between neighboring nodes, based on 
the structure of SR-GNN. TAGNN [15] adds a Target Attentive module to the graph within a 
session, re-weighting to focus more on past behaviors associated with the target item.  

While previous studies attempted to integrate sequential and graph structures within a session, 
COTREC [16] separated the session into internal and external graphs and applied contrastive 
learning between the two encoders to effectively improve data sparsity issues. GCE-GNN [17] 
proposed a dual network structure separated into session graphs and global graphs. The former 
learns sequential relationships between items within the current session, while the latter learns 
sequential relationships between items globally, demonstrating consistent performance advantages 
across all benchmark datasets. GAG [18] added user embeddings as global features to both graphs, 
simultaneously reflecting sequential relationships between items within the current session and 
global user preferences. However, sequential and graph integration models are optimized for 
predicting the next item, and thus have limitations in reflecting multi-stage decision-making 
processes such as long-term user satisfaction and content diversity. 

 
2.2. Reinforcement Learning and Recommender Systems 
2.2.1. Reinforcement Learning 

Reinforcement learning is a machine learning paradigm in which an agent learns the optimal policy 
that maximizes the expected value of cumulative rewards through interaction with the environment. 
Reinforcement learning algorithms are broadly categorized into value-based methods and policy-based 
methods. The former includes Q-Learning [19] which approximates the optimal action-value function 
using the Bellman equation, and DQN [20] which extends this to deep neural networks. The latter 
includes the policy gradient method proposed by Sutton, et al. [21], which directly parameterizes the 
policy and maximizes the expected cumulative reward using gradient ascent. However, early policy 
gradient methods relied on Monte Carlo estimation, resulting in high variance and significantly reduced 
learning stability. To address these issues, TRPO [22] limited the policy gradient update rate using a 
KL divergence constraint, ensuring monotonic improvement. Furthermore, PPO [23] introduced a 
clipped surrogate objective function to suppress excessive policy changes, achieving learning stability 
similar to TRPO while improving computational efficiency. 
 
2.2.2. Reinforcement Learning for LLMs 

A notable development in recent reinforcement learning research is that algorithms developed in 
different fields are being successfully applied to other fields with structurally similar characteristics. 
OpenAI's GPT-o1 [24] utilized the PPO algorithm to optimize a human feedback-based reward model, 
thereby enhancing its ability to generate responses aligned with user preferences. A particularly notable 
development is the GRPO algorithm proposed in DeepSeek-R1. The GRPO algorithm demonstrated 
that it can effectively improve policy performance without a separate reward model by utilizing only 
Reinforcement Learning with Verifiable Rewards (RLVR). Yu, et al. [25] proposed a methodology that 
utilizes the degree of agreement with expert reference answers as a binary signal, and Wu, et al. [26] 
achieved performance improvements by setting accuracy and visual quality metrics as binary rewards in 
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the RLVR-World environment. 
 
2.2.3. Reinforcement Learning for Recommender Systems 

Reinforcement learning in recommender systems probabilistically models the uncertainty of user 
behavior and optimizes long-term user satisfaction and engagement by designing multidimensional 
reward functions such as click-through rates, purchase conversion rates, and dwell time. This approach 
differs from traditional supervised learning-based recommendation methods, which focus on short-term 
prediction accuracy.  

PRL Xin, et al. [27] converts past interaction data into state-cumulative reward prompts and 
replaces the traditional policy evaluation step of value function learning with cross-entropy-based 
supervised learning, thereby significantly improving recommendation performance without the need for 
a separate critic network. CSA [28] improves the stability of policy learning by integrating single-state 
data augmentation and contrastive learning in sparse reward environments. Similarly, MECRL [29] 
addresses the data scarcity issue in sequential recommendation environments by generating virtual state 
transitions using an environment model and significantly improving the stability of policy learning and 
recommendation accuracy through contrastive learning.  

However, reinforcement learning research in the existing recommender system field has mainly 
developed using value-based methods or limited forms of policy gradient methods, and the application of 
next-generation algorithms such as GRPO, which has recently gained attention in LLM research, has 
not yet been sufficiently studied. In particular, considering the excellent performance of GRPO in 
RLVR environments proven in LLM research, it is necessary to verify the applicability and effectiveness 
of GRPO in the recommender systems field, which has similar structural characteristics. 
 

3. Methodology 
In this section, we describe how to perform policy gradient updates by applying the GRPO 

algorithm to existing collaborative filtering models. The rationale for applying the GRPO 
algorithm is as follows: 

• Reinforcement Learning with Verifiable Rewards. The GRPO algorithm uses a binary 
reward structure of acceptance or rejection for each token during the LLM learning process. 
This can be interpreted similarly to user interactions such as clicks or non-clicks in 
recommender systems. 

• High-dimensional action space. DeepSeek-R1 selects and generates tokens from a vast 
vocabulary. This can be interpreted as similar to the structure of selecting one 
recommendation from a vast pool of recommendations in a recommender system. 

Based on these commonalities, this section proposes a method for implementing an effective 
recommender system by interpreting user interactions in collaborative filtering as verifiable binary 
reward signals and utilizing the GRPO algorithm to learn the optimal policy from a vast pool of 
recommendation candidates. 
 
3.1. Collaborative Filtering Model 
3.1.1. Sequential Collaborative Filtering Model 

Sequential collaborative filtering models analyze historical user behavior in chronological order. Let 

𝑢 ∈ 𝒰 be a user who interacts with item 𝑖𝑡
𝑢 ∈ ℐ at time 𝑡. The chronologically ordered sequence of items 

with which user 𝑢 has interacted is denoted by𝒮𝓊 = (𝑖1
𝑢 ,   𝑖2

𝑢,  … ,  𝑖|𝒮𝓊|
𝑢 ). For every item 𝑖 ∈ ℐ, we define a 

trainable item embedding matrix 𝑀 ∈  𝑅|𝕀|×𝑑 whose rows are 𝑑-dimensional vectors. We further 

introduce a position embedding matrix 𝑃 ∈  𝑅|𝕊
𝕦|×𝑑 that encodes the position of each item in the 

sequence. By selecting the rows of 𝑀 that correspond to 𝒮𝓊 and adding the associated position 

embeddings, we obtain the sequential embeddings 𝐸𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 as follows: 
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𝐸𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 =

[
 
 
 
 

𝑀𝑖1
𝑢 + 𝑃1

𝑀𝑖2
𝑢 + 𝑃2
⋮

𝑀𝑖
|𝑆𝑢|−1
𝑢 + 𝑃|𝑆𝑢|−1𝑀𝑖

|𝑆𝑢|
𝑢 + 𝑃|𝑆𝑢|]

 
 
 
 

∈ 𝑅|𝕊
𝕦|×𝑑                     (1)  

 
The models that generate embeddings using the above architecture are GRU4Rec, which uses gated 
recurrent unit, and SASRec, which replaces recurrent layers with Self-Attention. 
 
3.1.2. Graph-based Collaborative Filtering Model 

Graph-based collaborative filtering models analyze the structural relationships between users and 

items via graph propagation. Given a bipartite graph 𝒢 = (𝒰 ∪ ℐ,  ℰ) with user set 𝒰 = (𝑢1, … , 𝑢|𝒰|) 

and item set ℐ = (𝑖1, … , 𝑖|ℐ|) the observed interaction set ℰ ⊆ 𝒰 × ℐ is used for training. First, we define 

an initial embedding matrix 𝑀(0) ∈ 𝑅(|𝕌|+|𝕀|)×𝑑that stores trainable 𝑑-dimensional vectors for all nodes. 

We then construct the adjacency matrix 𝐴 ∈ (0,1)(|𝒰|+|ℐ|)×(|𝒰|+|ℐ|), with 𝐴𝑢,𝑖 = 1 if (𝑢, 𝑖) ∈ ℰ, 0 

otherwise. The adjacency matrix is normalized as �̃� = 𝐷−1/2 𝐴 𝐷−1/2 where 𝐷 is the diagonal degree 

matrix. By propagating embeddings through 𝐾 layers, we obtain (𝑀(0), … ,𝑀(𝐾)). The final graph 
embedding is generated as follows: 

𝑬𝒈𝒓𝒂𝒑𝒉 =∑𝛼𝑘𝑴
(𝒌)

𝐾

𝑘=0

∈ 𝑅(|𝕌|+|𝕀|)×𝑑               (2)  

 
 The models that generate embeddings using the above architecture are GraphSAGE [30] and 
LightGCN 
 
3.1.3. Integrated Collaborative Filtering Model 

The integration of sequential and graph modules is achieved by jointly learning both the temporal 

interaction sequence 𝒮𝓊 = (𝑖1
𝑢,   𝑖2

𝑢,  … ,  𝑖|𝒮𝓊|
𝑢 ) and the bipartite graph 𝒢 = (𝒰 ∪ ℐ,  ℰ) in a single 

embedding space. To store trainable 𝑑-dimensional vectors for every node 𝑣 ∈ 𝒰 ∪ ℐ, we define an 

initial embedding matrix 𝑀(0) ∈ 𝑅(|𝕌|+|𝕀|)×𝑑 . The sequential encoder then computes representations 

𝑒𝑣
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

 and the graph encoder computes 𝑒𝑣
𝑔𝑟𝑎𝑝ℎ

. By applying an alignment and uniformity loss over 

the two views of each node ( 𝑒𝑣
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

,  𝑒𝑣
𝑔𝑟𝑎𝑝ℎ

 ), we obtain the final integrated embeddings as follows: 
 

𝐸𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 = β 𝑒𝑣
𝑔𝑟𝑎𝑝ℎ

+ (1 − β) 𝑒𝑣
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

                (3)  

 
The model that generates embeddings using the above architecture is GSAU. 
 
3.2. Applying the GRPO Algorithm in Recommender Systems 

We fine-tune the embeddings from pre-trained collaborative filtering models by applying the 

GRPO algorithm. When GRPO is applied, the sequential model state is defined as 𝑠𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 ≔

𝑒𝑣
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

= (𝑒𝑖𝑡𝑒𝑚,  𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛), the graph model state as 𝑠𝑔𝑟𝑎𝑝ℎ ≔ 𝑒𝑣
𝑔𝑟𝑎𝑝ℎ

= (𝑒𝑖𝑡𝑒𝑚 ,  𝑒𝑢𝑠𝑒𝑟), and the 

integrated model state as 𝑠𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 ≔ 𝑒𝑣
𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑

= (𝑒𝑖𝑡𝑒𝑚,  𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑒𝑢𝑠𝑒𝑟). Given a state 𝑠, we 

sample 𝐺 candidate items (𝑜1, … , 𝑜𝐺) from the old policy πθold
; for each 𝑜, we observe a verifiable binary 

reward 𝑟𝑡 = 𝑟(𝑠, 𝑜)  ∈  (0,1) and estimate the current policy’s success probability 𝑝 by 𝑝 =
1

𝐺
∑ 𝑟𝑡
𝐺
𝑡=1 . 

We then define the GRPO advantage estimate 𝐴(𝑠, 𝑜) as follows: 
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𝐴(𝑠, 𝑜) =

{
 
 

 
 

√
1 − 𝑝

𝑝
 if 𝑟(𝑠, 𝑜) = 1

−√
𝑝

1 − 𝑝
 if 𝑟(𝑠, 𝑜) = 0

                  (4)  

Next, we compute the importance ratio ρ𝑡 =
πθnew(𝑜𝑡∣∣𝑠 )
πθold

(𝑜𝑡∣∣𝑠 )
 , and apply the PPO clipping to each 

candidate 𝑜𝑡 to obtain gradient optimization objective as follows: 
 

𝐽GRPO(θ) =
1

𝐺
∑[min(ρ𝑡𝐴(𝑠, 𝑜𝑡),  clip(ρ𝑡 , 1 − ε, 1 + ε) 𝐴(𝑠, 𝑜𝑡)) − β 𝐷KL(πθold

|πref)]

𝐺

𝑡=1

  (5)  

 Here, ε ∈ (0,1) is a hyperparameter that bounds the importance ratio within [1 − ε,  1 + ε], and 

β > 0 is the KL-regularization coefficient controlling the divergence between the new policy and the 
reference policy. Through this process, GRPO repeatedly amplifies the reference policy’s success 

probability 𝑝 and enhances convergence stability during training, thereby achieving model optimization 
[31]. 
  

4. Results 
4.1. Experimental Setup 
4.1.1. Datasets 
 For model evaluation, we utilized datasets from Amazon recommendation reviews Hou, et al. 
[32] in the fields of baby products, video games, and industrial and scientific. We intentionally selected 
datasets with varying statistics regarding the number of users and items to comprehensively evaluate 
the models’ performance. 
 Table 1 represents the statistics of preprocessed datasets. In previous studies [3, 5] as part of 
core data filtering, users and items with fewer than interactions were removed only once. However, in 
recent studies [8, 33] the core data filtering method is repeatedly executed until there are no more 
items to remove. Therefore, in this study, users and items with fewer than five interactions were 
repeatedly removed to preprocess the data. 
 
Table 1.  
Statistics of the dataset after preprocessing. Avg. Len denotes the average sequence length of users. 

Datasets #Users #Items Interactions Avg. Len 
Baby Products 155.434 36.845 1.287.653 8.28 

Video Games 98.906 26.354 857.505 8.67 
Industrial & Scientific 54.567 27.229 446.046 8.17 

 
4.1.2. Baseline 

In this study. the GRPO algorithm was applied to three baseline models. Among sequential 
collaborative filtering models. SASRec was used as the baseline model; among graph-based collaborative 
filtering models. LightGCN was used; and among sequential and graph integrated collaborative 
filtering models. GSAU was used. 
 
4.1.3. Evaluation Setting 

We grouped all interaction data by user and sorted each user's interaction history chronologically. 
The last interaction data in the sorted data was assigned to the evaluation set. the previous interaction 
data was assigned to the validation set. and the rest was used as the training set. In the evaluation 



877 

 

 

Edelweiss Applied Science and Technology 
ISSN: 2576-8484   

Vol. 9, No. 8: 871-881, 2025 
DOI: 10.55214/2576-8484.v9i8.9471 
© 2025 by the authors; licensee Learning Gate 

 

phase. instead of the sampling method used in previous studies. we performed a full-ranking evaluation 
[33, 34] with all items as candidates. Additionally. we masked past items that had already been exposed 
during the training phase to exclude them from the evaluation. For quantitative comparison and 
evaluation. we used Recall and Normalized Discounted Cumulative Gain (NDCG) scores. which are 
widely used as evaluation metrics in recommender systems. 
 
4.1.4. Implementation Details 

The hyperparameters of the three baseline collaborative filtering models were set identically for fair 
comparison. The batch size is 2048. the random seed is 2020. and the epoch is 200. For GRPO learning. 
the epoch is 1.000. and the specific hyperparameter settings are shown in Table 2. 
 
Table 2.  
Collaborative Filtering Models and GRPO Learning Hyperparameters. 

Datasets Learning rate Dropout 
Embedding dimension 

𝒅 
Sample candidates 𝑮 𝜷 𝜺 

Baby Products 0.0001 0.5 64 4096 0.01 0.1 

Video Games 0.0001 0.5 64 4096 0.01 0.1 
Industrial & Scientific 0.0001 0.5 64 4096 0.01 0.1 

 
4.2. Performance Comparison 

The experimental results show that optimizing the collaborative filtering model using the GRPO 
algorithm yields different performance depending on the model architecture. As shown in Table 3. 

𝐺𝑆𝐴𝑈 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑. in which GRPO is applied to the integrated sequential-graph model GSAU. 
consistently improves recommendation performance across all datasets. On the Industrial and Scientific 

and Video Games datasets. 𝐺𝑆𝐴𝑈 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑 yields modest relative gains of approximately 
1.5%-3%. Most notably. on the Baby Products dataset it achieves substantial improvement of about 
13%-15%. with the largest performance improvement of about 15.16% in the Recall@10. Likewise. 

𝐿𝑖𝑔ℎ𝑡𝐺𝐶𝑁 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑. which optimized the graph-based model LightGCN with GRPO. showed 
a slight performance improvement of approximately 0.07%-0.81% on the Industrial and Scientific and 
Video Games datasets. while exhibiting no meaningful change on the Baby Products dataset. 

In contrast. 𝑆𝐴𝑆𝑅𝑒𝑐 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑. in which GRPO is applied to the sequential model SASRec. 
suffers performance degradation on every dataset. In particular. on the Video Games dataset. 
NDCG@10 suffers the most significant drop. decreasing by 38.3%. This suggests that the policy 
gradient update process for item and positional embeddings in sequential collaborative filtering models 
may differ from that in graph and integrated models. 
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Table 3.  
Comparison of top recommendation performance between our method models and baseline models and GRPO algorithms applied to Amazon industrial and scientific. video games. 
and baby products review datasets. R stands for recall. and N stands for NDCG evaluation metrics. Superior performance is indicated in bold. 

Method 
Baby Products Video Games Industrial & Scientific 

R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 
SASRec 0.0394 0.0976 0.0219 0.0344 0.1005 0.2133 0.0569 0.0815 0.0408 0.0940 0.0232 0.0346 

𝑆𝐴𝑆𝑅𝑒𝑐 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑 0.0306 0.0858 0.0164 0.0282 0.0639 0.1529 0.0351 0.0543 0.0389 0.0976 0.0202 0.0329 

LightGCN 0.0209 0.0487 0.0122 0.0182 0.0648 0.1374 0.0372 0.0530 0.0296 0.0658 0.0170 0.0248 

𝐿𝑖𝑔ℎ𝑡𝐺𝐶𝑁 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑 0.0209 0.0487 0.0122 0.0182 0.0649 0.1375 0.0372 0.0530 0.0297 0.0660 0.0171 0.0250 

GSAU 0.0322 0.0805 0.0177 0.0281 0.0967 0.2139 0.0546 0.0801 0.0459 0.1037 0.0263 0.0387 

𝐺𝑆𝐴𝑈 − 𝐺𝑅𝑃𝑂𝑜𝑢𝑟𝑚𝑒𝑡ℎ𝑜𝑑 0.0366 0.0927 0.0200 0.0321 0.0995 0.2184 0.0555 0.0813 0.0468 0.1063 0.0267 0.0395 

 
Table 4.  
Performance differences between policy gradient update targets. Bold text indicates the highest performance. and underlined text indicates the second highest performance. 

Method 
Baby Products Video Games Industrial & Scientific 

R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 R@10 R@50 N@10 N@50 
GSAU 0.0322 0.0805 0.0177 0.0281 0.967 0.2139 0.0546 0.0801 0.0459 0.1037 0.0263 0.0387 

𝑒𝑖𝑡𝑒𝑚 0.0364 0.0921 0.0199 0.0319 0.0993 0.2181 0.0554 0.0812 0.0467 0.1062 0.0267 0.0395 

𝑒𝑖𝑡𝑒𝑚 . 𝑒𝑢𝑠𝑒𝑟 0.0366 0.0927 0.0200 0.0321 0.0995 0.2184 0.0555 0.0813 0.0468 0.1063 0.0267 0.0395 

𝑒𝑖𝑡𝑒𝑚 . 𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 0.0314 0.0776 0.0173 0.0272 0.0875 0.1969 0.0486 0.0723 0.0451 0.1019 0.0257 0.0380 

𝑒𝑖𝑡𝑒𝑚 . 𝑒𝑢𝑠𝑒𝑟 . 𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 0.0317 0.0776 0.0174 0.0273 0.0876 0.1972 0.0487 0.0725 0.0451 0.1021 0.0258 0.0381 
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4.3. Ablation Study 
In this section. we conducted the ablation study to verify the performance changes according to the 

collaborative filtering model architecture when updating the GRPO policy. We selectively used item 
embeddings. user embeddings. and positional embeddings. which constitute the integrated collaborative 
filtering model GSAU. for policy optimization. As shown in Table 4. when only item embeddings were 
used for policy gradient updates. and when both item embeddings and user embeddings were used for 
policy gradient updates. consistent performance improvements were observed across all datasets—baby 
products. video games. and industrial and scientific—compared to the baseline model GSAU. In 
particular. the greatest performance improvement was observed when both item embeddings and user 
embeddings were used for policy gradient updates. suggesting that user embeddings are the most 
significant positive factor in GRPO reinforcement learning. 

In contrast. when item embeddings. user embeddings. and positional embeddings were all used in 
policy gradient updates. and when item embeddings and positional embeddings were used in policy 
gradient updates. consistent performance degradation was observed across all datasets compared to the 
baseline model GSAU. In particular. when item embeddings and positional embeddings were used 
together for policy gradient updates. the largest performance degradation was observed. suggesting that 
positional embeddings are the factor that has the greatest negative effect in GRPO reinforcement 
learning. This suggests that policy gradient updates of positional embeddings may destabilize the 
advantage estimates in the GRPO calculation process. distorting the importance ratio distribution.  

These observations demonstrate that embedding selection is as important as model architecture in 
optimizing GRPO-based collaborative filtering models. In particular. the significant performance 
degradation observed in sequential models suggests that updated positional embeddings were a major 
contributing factor. 
 

5. Conclusion 
This paper proposes a new method for integrating the GRPO algorithm into a collaborative 

filtering-based recommender system. Unlike traditional collaborative filtering models. which primarily 
focus on short-term prediction accuracy. this paper utilizes reinforcement learning to focus on long-
term user satisfaction and prediction accuracy. achieving performance optimization using various real-
world datasets. The GRPO reinforcement learning-based model achieved superior performance 
compared to the baseline model across multiple metrics. Notably. it demonstrated up to a 15% 
performance improvement on the baby products dataset. Through removal experiments. the role of the 
GRPO policy gradient update target embeddings was validated. and the most outstanding performance 
optimization was achieved when both item embeddings and user embeddings were updated via the 
policy. 
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